SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu T) ;lar1:(hb)"

Sökning: WFRF:(Liu T) > Högskolan i Borås

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Awasthi, S. K., et al. (författare)
  • Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 291
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the influence of coconut shell biochar (CSB) on heavy metal resistance fungi (HMRF) during poultry manure (PM) composting by 18 S rDNA Internal Transcribed Spacer Amplicon Sequencing analysis. Five different concentrations of CSB (2.5%, 5%, 7.5%, and 10% dry weights basis) were applied with a mixture of PM and wheat straw (5:1 ratio dry weight basis) and without CSB (CK) was used as control. The results showed that sequence number rose along with increasing CSB concentration but total relative abundance (RA) of HMRF decreased 56.33%, 74.65% in T4 and T5, respectively. However, greater RA of HMRF was found in T1 or without biochar applied treatment. The phylum of Basidiomycota was the dominant fungal community accounting for 61.14%, 6.16%, 32.18%, 74.65%, and 73.73% from T1 to T5 of the total fungi abundance, with wide presence of the Wallemiomycetes and Eurotiomycetes classes. The Wallemia and Aspergillus were the richest genus and species. Wallemia_sebi, Altemaria_alternata and Aspergillus_amoenus were detected having greater abundance among all treatments. Besides this, the network correlation pattern confirmed that the relative greater percentage of correlation among dominant HMRF community with bio-available HM and other physicochemical factors increased with the addition of biochar. There was reasonable infer that the biochar amendment in composting could constitute favorable habitat for an active fungal population. 
  •  
2.
  • Liu, H., et al. (författare)
  • Distribution of heavy metal resistant bacterial community succession in cow manure biochar amended sheep manure compost
  • 2021
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 335
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this investigation was to study the effects of cow manure biochar (CMB) on the distribution of heavy metal resistant bacterial (HMRB) community succession during sheep manure (SM) composting. The experiments were conducted with six different ratio of CMB (0%(T1), 2.5%(T2), 5%(T3), 7.5%(T4), 10%(T5) and 12% (T6) on a dry weight basis) and 0% is used as control. The results showed that the most dominant phylum were Proteobacteria (40.89%-5.65%) and Firmicutes (0.16%-93.18%), and 7.5% CMB mixed with sheep manure for best results. Thus, significant correlation was noticed among the analyzed physicochemical factors, gaseous emission and bacterial phylum in used 7.5–10% CMB applied for SM composting. Overall, the application of biochar increased the diversity of the bacterial community and promoted the degradation of organic matter. In addition, 7.5–10% CMB applied treatments showed greater immobilization of HMRB community succession during SM composting.
  •  
3.
  • Qin, S., et al. (författare)
  • Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors
  • 2021
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 335
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the influence of distinct hydraulic retention times (HRT) and organic loading rates (OLRs) on fungal dynamics during food waste anaerobic digestion in immersed membrane-based bio-reactors (iMBR) were investigated. The organic loading rate 4–8 g VS/L/d (R1) and 6–10 g VS/L/d (R2) were set in two iMBR. T1 (1d), T2 (15d) and T3 (34d) samples collected from each bioreactor were analyzed fungal community by using 18s rDNA. In R2, T2 had the most abundant Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. As for R1, T3 also had the richest Cryptomycota except above four kinds of fungi. Subsequently, the Principal Component Analysis (PCA) and Non-Metric Multi-Dimensional Scaling (NMDS) indicated that fungal diversity was varied among the all three phases (T1, T2, and T3) and each treatment (R1 and R2). Finally, the results showed that different OLRs and HRT have significantly influenced the fungal community. 
  •  
4.
  • Awasthi, M, et al. (författare)
  • Emerging applications of biochar : Improving pig manure composting and attenuation of heavy metal mobility in mature compost
  • 2020
  • Ingår i: Journal of Hazardous Materials. - : Elsevier B.V.. - 0304-3894 .- 1873-3336. ; 389
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluated the effect of integrated bacterial culture and biochar on heavy metal (HM) stabilization and microbial activity during pig manure composting. High-throughput sequencing was carried out on six treatments, namely T1-T6, where T2 was single application of bacteria culture (C), T3 and T5 were supplemented with 12 % wood (WB) and wheat-straw biochar (WSB), respectively, and T4 and T6 had a combination of bacterial consortium mixed with biochar (12 % WB and 12 % WSB, respectively). T1 was used as control for the comparison. The results show that the populations of bacterial phyla were significantly greater in T6 and T4. The predominate phylum were Proteobacteria (56.22 %), Bacteroidetes (35.40 %), and Firmicutes (8.38 %), and the dominant genera were Marinimicrobium (53.14 %), Moheibacter (35.22 %), and Erysipelothrix (5.02 %). Additionally, the correlation analysis revealed the significance of T6, as the interaction of biochar and bacterial culture influenced the HM adsorption efficiency and microbial dynamics during composting. Overall, the integrated bacterial culture and biochar application promoted the immobilization of HMs (Cu and Zn) owing to improved adsorption, and enhanced the abundance and selectivity of the bacterial community to promote degradation and improving the safety and quality of the final compost product. © 2020 Elsevier B.V.
  •  
5.
  • Awasthi, S. K., et al. (författare)
  • Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 406
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1−T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88–14.32%), Actinobacteria (35.20–4.99%), Bacteroidetes (0.05–15.07%) and Proteobacteria (0.01–20.28%) with elevated biochar concentration (0%−10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality. 
  •  
6.
  • Duan, Y., et al. (författare)
  • Dynamics of fungal diversity and interactions with environmental elements in response to wheat straw biochar amended poultry manure composting
  • 2019
  • Ingår i: Bioresource Technology. - : Elsevier Ltd. - 0960-8524 .- 1873-2976. ; , s. 410-417
  • Tidskriftsartikel (refereegranskat)abstract
    • The fungal dynamics and its correlation with physicochemical and gaseous emission were investigated using metagenomics and Heat map illustrator (HEMI). Five different concentrations of wheat straw biochar (WSB) were applied to poultry manure (PM) and composted for 50 days; those without the WSB treatment were used as a control. The results revealed the dominant phyla to be Chytridiomycota, Mucoromycota, Ascomycota and Basidiomycota, while Batrachochytrium, Rhizophagus, Mucor, and Puccinia were the superior genera. In particular, the diversity of Chytridiomycota and Ascomycota was more abundant among all of the treatments. Overall, the diversity of the fungal species was correspondent, but relative abundance varied significantly among all of the composts. Principle Coordinate Analysis (PCoA) and Non-Metric Multi- Dimensional Scaling (NMDS) indicated that different concentrations of WSB applied treatments have significantly distinct fungal communities. In addition, correlation analyses of fungal interactions with environmental elements via HEMI also indicate a clear difference among the treatments. Ultimately, the relative abundance of fungal composition significantly influenced the PM compost treated by the WSB.
  •  
7.
  • Duan, Y., et al. (författare)
  • Evaluating the impact of bamboo biochar on the fungal community succession during chicken manure composting
  • 2019
  • Ingår i: Bioresource Technology. - : Elsevier Ltd. - 0960-8524 .- 1873-2976. ; 272, s. 308-314
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to investigate the fungal community succession and variations in chicken manure (CM) compost with different concentration of bamboo biochar (BB) as additive via the using of metagenomics method. The consequent obviously revealed that Chytridiomycota, Mucoromycota, Ascomycota and Basidiomycota were the dominant phylum, while Batrachochytrium, Funneliformis, Mucor, Phizophagus and Pyronema were the pre-dominant genera in each treatment. Redundancy analyses indicated that higher dosage of biochar applied treatments has significant correlation between fungal communities and environmental factors. The diversity of fungal community was analogous but the relative abundance (RA) was inconsistent among the all treatments. In addition, the principal component analysis was also confirmed that T5 and T6 treatments have considerably correlation than other treatments. However, the mean value of RA remained maximum in higher dosage of biochar blended treatments. Ultimately, the RA of different fungal genus and species were influenced in CM compost by the BB amendment.
  •  
8.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Refining biomass residues for sustainable energy and bio-products : An assessment of technology, its importance, and strategic applications in circular bio-economy
  • 2020
  • Ingår i: Renewable & sustainable energy reviews. - : Elsevier Ltd. - 1364-0321 .- 1879-0690. ; 127
  • Tidskriftsartikel (refereegranskat)abstract
    • In the circular bio-economy, effective biomass valorization through the strategic use of resources is essential in terms of generating valuable products, sustainable development, and maximizing ecological and socio-economic benefits. Technologies are being developed and improved to optimize the use of abundant biomass and to generate several value-added products. Efficient nutrient recovery requires additional energy-intensive steps for effective valorization. Moreover, appropriate waste collection and pretreatment practices increase the degree of valorization. The use of biomass waste in biorefineries has significant potential to yield biofuels and organic fertilizers. Further research and development are required to develop effective biorefining technologies to enable the efficient exploitation of bioresources. Greater consideration should be applied to energy pathways to support this technology. Therefore, there is a demand for innovation in the integrated biorefining approach in response to changing markets, and novel commercial models should be introduced into the circular economy.
  •  
9.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste
  • 2021
  • Ingår i: Renewable & sustainable energy reviews. - : Elsevier BV. - 1364-0321 .- 1879-0690. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy sector contributed to three-fourth of overall global emissions in the past decade. Biological wastes can be converted to useful energy and other byproducts via biological or thermo-chemical routes. However, issues such as techno-economic feasibility and lack of understanding on the overall lifecycle of a product have hindered commercialization. It is needed to recognize these inter-disciplinary factors. This review attempts to critically evaluate the role of technology, economics and lifecycle assessment of bio-waste in two processing types. This includes: 1. biological and, 2. thermo-chemical route. The key findings of this work are: 1. Policy support is essential for commercialization of a waste treatment technology; 2. adequate emphasis is necessary on the social dimensions in creating awareness; and 3. from a product development perspective, research should focus on industrial needs. The choice of the treatment and their commercialization depends on the regional demand of a product, policy support, and technology maturity. Utilization of bio-wastes to produce value-added products will enhance circular economy, which in turn improves sustainability. 
  •  
10.
  • Zhou, Y W, et al. (författare)
  • Patterns of heavy metal resistant bacterial community succession influenced by biochar amendment during poultry manure composting
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 420
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate the heavy metal resistant bacteria (HMRB) community succession and bacterial activity in poultry manure (PM) composting. Five different concentration of chicken manure biochar (CMB) at 0%, 2%, 4%, 6%, and 10% on a dry weight basis was applied with initial feedstock (poultry manure + wheat straw) and indicated with T1, T2, T3, T4, and T5. In addition, high-throughput sequencing, principal coordinate analysis, and correlation analysis were used to analyze the evolution of HMRB communities during composting. The study indicated that crucial phyla were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The bacterial diversity in the CMB amendment treatment was higher than in the control treatment, and T4 treatment has the highest among all CMB applied treatments. Moreover, results from CCA indicated that T4 and T5 treatments quickly enters the high-temperature period which is maintained for 5 days, and is significantly positively correlated with Proteobacteria, and Actinobacteria. These findings offer insight into potential strategies to understand the succession of HMRBs during PM reuse. Overall, the above results show the addition of 6% biochar (T4) was potentially beneficial to enrich the abundance of bacterial community to improve composting environment quality and composting efficiency. In addition, effective to immobilized the heavy metals and HMRB in the end product.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy