SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loos Ruth J F) ;mspu:(researchreview)"

Sökning: WFRF:(Loos Ruth J F) > Forskningsöversikt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
3.
  • Bray, Molly S, et al. (författare)
  • NIH working group report-using genomic information to guide weight management: From universal to precision treatment.
  • 2016
  • Ingår i: Obesity. - : Wiley. - 1930-739X .- 1930-7381. ; 24:1, s. 14-22
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine utilizes genomic and other data to optimize and personalize treatment. Although more than 2,500 genetic tests are currently available, largely for extreme and/or rare phenotypes, the question remains whether this approach can be used for the treatment of common, complex conditions like obesity, inflammation, and insulin resistance, which underlie a host of metabolic diseases.
  •  
4.
  • Johansson, Åsa, et al. (författare)
  • Precision medicine in complex diseases - : Molecular subgrouping for improved prediction and treatment stratification
  • 2023
  • Ingår i: Journal of Internal Medicine. - : John Wiley & Sons. - 1365-2796 .- 0954-6820. ; 294:4, s. 378-396
  • Forskningsöversikt (refereegranskat)abstract
    • Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Franks, Paul W. (2)
Franks, Paul (1)
Wang, Jin (1)
Wang, Mei (1)
Tuomi, Tiinamaija (1)
Andreassen, Ole A (1)
visa fler...
Jacobsson, Bo, 1960 (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Wagner, Robert (1)
Melén, Erik (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
Snyder, Michael P. (1)
Mohan, Viswanathan (1)
De Milito, Angelo (1)
Ling, Charlotte (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Clarke, Robert (1)
Johansson, Åsa (1)
Gomez, Maria F (1)
Kumar, Ashok (1)
Hansen, Torben (1)
Ahmad, Abrar (1)
Lim, Lee-Ling (1)
Morieri, Mario Luca (1)
Tam, Claudia Ha-Ting (1)
Cheng, Feifei (1)
Chikowore, Tinashe (1)
Dudenhöffer-Pfeifer, ... (1)
Fitipaldi, Hugo (1)
Huang, Chuiguo (1)
Kanbour, Sarah (1)
Sarkar, Sudipa (1)
Motala, Ayesha A (1)
Tye, Sok Cin (1)
Yu, Gechang (1)
Zhang, Yingchai (1)
Provenzano, Michele (1)
Sherifali, Diana (1)
Ma, Ronald C W (1)
Mathioudakis, Nestor ... (1)
Koivula, Robert W (1)
Pratley, Richard E (1)
Hirsch, Irl B. (1)
Mathieu, Chantal (1)
visa färre...
Lärosäte
Lunds universitet (4)
Göteborgs universitet (2)
Karolinska Institutet (2)
Umeå universitet (1)
Uppsala universitet (1)
Linköpings universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy