SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lovering R. C.) "

Search: WFRF:(Lovering R. C.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Franceschini, N., et al. (author)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
2.
  • Lumbers, R. T., et al. (author)
  • The genomics of heart failure: design and rationale of the HERMES consortium
  • 2021
  • In: Esc Heart Failure. - : Wiley. - 2055-5822. ; 8:6, s. 5531-5541
  • Journal article (peer-reviewed)abstract
    • Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure. Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model. Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
  •  
3.
  • Shah, S, et al. (author)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
4.
  • Franceschini, N, et al. (author)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 5141-
  • Journal article (peer-reviewed)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
  •  
5.
  • Lindbohm, J. V., et al. (author)
  • Plasma proteins, cognitive decline, and 20-year risk of dementia in the Whitehall II and Atherosclerosis Risk in Communities studies
  • 2022
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:4, s. 612-24
  • Journal article (peer-reviewed)abstract
    • Introduction Plasma proteins affect biological processes and are common drug targets but their role in the development of Alzheimer's disease and related dementias remains unclear. We examined associations between 4953 plasma proteins and cognitive decline and risk of dementia in two cohort studies with 20-year follow-ups. Methods In the Whitehall II prospective cohort study proteins were measured using SOMAscan technology. Cognitive performance was tested five times over 20 years. Linkage to electronic health records identified incident dementia. The results were replicated in the Atherosclerosis Risk in Communities (ARIC) study. Results Fifteen non-amyloid/non-tau-related proteins were associated with cognitive decline and dementia, were consistently identified in both cohorts, and were not explained by known dementia risk factors. Levels of six of the proteins are modifiable by currently approved medications for other conditions. Discussion This study identified several plasma proteins in dementia-free people that are associated with long-term risk of cognitive decline and dementia.
  •  
6.
  • Talmud, Philippa J., et al. (author)
  • Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip
  • 2009
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 85:5, s. 628-642
  • Journal article (peer-reviewed)abstract
    • Blood lipids are important cardiovascular disease (CVD) risk factors with both genetic and environmental determinants. The Whitehall II study (n = 5592) was genotyped with the gene-centric HumanCVD BeadChip (Illumina). We identified 195 SNPs in 16 genes/regions associated with 3 major lipid fractions and 2 apolipoprotein components at p < 10(-5), with the associations being broadly concordant with prior genome-wide analysis. SNPs associated with LDL cholesterol and apolipoprotein B were located in LDLR, PCSK9, APOB, CELSR2, HWGCR, CETP, the TOMM40-APOE-C1-C2-C4 cluster, and the APOA5-A4-C3-A1 cluster; SNPs associated with HDL cholesterol and apolipoprotein AI were in CETP, LPL, LIPC, APOA5-A4-C3-A1, and ABCA1; and SNPs associated with triglycerides in GCKR, BAZIB, MLXIPL, LPL, and APOA5-A4-C3-A1. For 48 SNPs in previously unreported loci that were significant at p < 10(-4) in Whitehall II, in silico analysis including the British Women's Heart and Health Study, BRIGHT, ASCOT, and NORDIL studies (total n > 12,500) revealed previously unreported associations of SH2B3 (p < 2.2 x 10(-6)), BMPR2 (p < 2.3 x 10(-7)), BCL3/PVRL2 (flanking APOE; p < 4.4 x 10(-8)), and SMARCA4 (flanking LDLR; p < 2.5 x 10(-7)) with LDL cholesterol. Common alleles in these genes explained 6.1%-14.7% of the variance in the five lipid-related traits, and individuals at opposite tails of the additive allele score exhibited substantial differences in trait levels (e.g., > 1 mmol/L in LDL cholesterol [similar to 1 SD of the trait distribution]). These data suggest that multiple common alleles of small effect can make important contributions to individual differences in blood lipids potentially relevant to the assessment of CVD risk. These genes provide further insights into lipid metabolism and the likely effects of modifying the encoded targets therapeutically.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view