SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lubberink Mark) ;mspu:(article);pers:(Wall Anders)"

Search: WFRF:(Lubberink Mark) > Journal article > Wall Anders

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Silins, Isabella, 1983-, et al. (author)
  • First-in-human evaluation of [18F]CETO : a novel tracer for adrenocortical tumours
  • 2023
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Nature. - 1619-7070 .- 1619-7089. ; 50:2, s. 398-409
  • Journal article (peer-reviewed)abstract
    • Purpose[11C]Metomidate positron emission tomography (PET) is currently used for staging of adrenocortical carcinoma and for lateralization in primary aldosteronism (PA). Due to the short half-life of carbon-11 and a high non-specific liver uptake of [11C]metomidate there is a need for improved adrenal imaging methods. In a previous pre-clinical study para-chloro-2-[18F]fluoroethyletomidate has been proven to be a specific adrenal tracer. The objective is to perform a first evaluation of para-chloro-2-[18F]fluoroethyletomidate positron emission computed tomography ([18F]CETO-PET/CT) in patients with adrenal tumours and healthy volunteers.MethodsFifteen patients underwent [18F]CETO-PET/CT. Five healthy volunteers were recruited for test-retest analysis and three out of the five underwent additional [15O]water PET/CT to measure adrenal blood flow. Arterial blood sampling and tracer metabolite analysis was performed. The kinetics of [18F]CETO were assessed and simplified quantitative methods were validated by comparison to outcome measures of tracer kinetic analysis.ResultsUptake of [18F]CETO was low in the liver and high in adrenals. Initial metabolization was rapid, followed by a plateau. The kinetics of [18F]CETO in healthy adrenals and all adrenal pathologies, except for adrenocortical carcinoma, were best described by an irreversible single-tissue compartment model. Standardized uptake values (SUV) correlated well with the uptake rate constant K1. Both K1 and SUV were highly correlated to adrenal blood flow in healthy controls. Repeatability coefficients of K1, SUV65–70, and SUV120 were 25, 22, and 17%.ConclusionsHigh adrenal uptake combined with a low unspecific liver uptake suggests that 18F]CETO is a suitable tracer for adrenal imaging. Adrenal SUV, based on a whole-body scan at 1 h p.i., correlated well with the net uptake rate Ki.Trial registrationClinicalTrials.gov, NCT05361083 Retrospectively registered 29 April 2022. at, https://clinicaltrials.gov/ct2/show/NCT05361083
  •  
2.
  •  
3.
  • Bodén, Robert, et al. (author)
  • Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia : a PET and MRI study
  • 2017
  • In: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:3
  • Journal article (peer-reviewed)abstract
    • The enzyme phosphodiesterase 10A (PDE10A) is abundant in striatal medium spiny neurons and has been implicated in the pathophysiology of schizophrenia in animal models and is investigated as a possible new pharmacological treatment target. A reduction of prefrontal cortical thickness is common in schizophrenia, but how this relates to PDE10A expression is unknown. Our study aim was to compare, we believe for the first time, the striatal non-displaceable binding potential (BPND) of the new validated PDE10A ligand [(11)C]Lu AE92686 between patients with schizophrenia and healthy controls. Furthermore, we aimed to assess the correlation of PDE10A BPND to cortical thickness. Sixteen healthy male controls and 10 male patients with schizophrenia treated with clozapine, olanzapine or quetiapine were investigated with positron emission tomography (PET) and magnetic resonance imaging (MRI). Striatal binding potential (BPND) of [(11)C]Lu AE92686 was acquired through dynamic PET scans and cortical thickness by structural MRI. Clinical assessments of symptoms and cognitive function were performed and the antipsychotic dosage was recorded. Patients with schizophrenia had a significantly lower BPND of [(11)C]Lu AE92686 in striatum (P=0.003) than healthy controls. The striatal BPND significantly correlated to cortical thickness in the medial prefrontal cortex and superior frontal gyrus across patients with schizophrenia and healthy controls. No significant correlation was observed between the BPND for [(11)C]Lu AE92686 in striatum and age, schizophrenia symptoms, antipsychotic dosage, coffee consumption, smoking, duration of illness or cognitive function in the patients. In conclusion, PDE10A may be important for functioning in the striato-cortical interaction and in the pathophysiology of schizophrenia.
  •  
4.
  •  
5.
  • Chiotis, Konstantinos, et al. (author)
  • Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm
  • 2016
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 43:9, s. 1686-1699
  • Journal article (peer-reviewed)abstract
    • Purpose The aim of this study was to explore the cerebral distribution of the tau-specific PET tracer [F-18]THK5317 (also known as (S)-[F-18]THK5117) retention in different stages of Alzheimer's disease; and study any associations with markers of hypometabolism and amyloid-beta deposition. Methods Thirty-three individuals were enrolled, including nine patients with Alzheimer's disease dementia, thirteen with mild cognitive impairment (MCI), two with non-Alzheimer's disease dementia, and nine healthy controls (five young and four elderly). In a multi-tracer PET design [F-18]THK5317, [C-11] Pittsburgh compound B ([C-11]PIB), and [F-18]FDG were used to assess tau pathology, amyloid-beta deposition and cerebral glucose metabolism, respectively. The MCI patients were further divided into MCI [C-11]PIB-positive (n=11) and MCI [C-11]PIB-negative (n=2) groups. Results Test-retest variability for [F-18]THK5317-PET was very low (1.17-3.81 %), as shown by retesting five patients. The patients with prodromal (MCI [C-11]PIB-positive) and dementia-stage Alzheimer's disease had significantly higher [F-18]THK5317 retention than healthy controls (p=0.002 and p=0.001, respectively) in areas exceeding limbic regions, and their discrimination from this control group (using the area under the curve) was >98 %. Focal negative correlations between [F-18]THK5317 retention and [F-18]FDG uptake were observed mainly in the frontal cortex, and focal positive correlations were found between [F-18]THK5317 and [C-11] PIB retentions isocortically. One patient with corticobasal degeneration syndrome and one with progressive supranuclear palsy showed no [C-11]PIB but high [F-18]THK5317 retentions with a different regional distribution from that in Alzheimer's disease patients. Conclusions The tau-specific PET tracer [F-18]THK5317 images in vivo the expected regional distribution of tau pathology. This distribution contrasts with the different patterns of hypometabolism and amyloid-beta deposition.
  •  
6.
  • Chiotis, K., et al. (author)
  • Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer's disease dementia
  • 2018
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 23:7, s. 1666-1673
  • Journal article (peer-reviewed)abstract
    • The development of tau-specific positron emission tomography (PET) tracers allows imaging in vivo the regional load of tau pathology in Alzheimer's disease (AD) and other tauopathies. Eighteen patients with baseline investigations enroled in a 17-month follow-up study, including 16 with AD (10 had mild cognitive impairment and a positive amyloid PET scan, that is, prodromal AD, and six had AD dementia) and two with corticobasal syndrome. All patients underwent PET scans with [F-18]THK5317 (tau deposition) and [F-18]FDG (glucose metabolism) at baseline and follow-up, neuropsychological assessment at baseline and follow-up and a scan with [C-11]PIB (amyloid-beta deposition) at baseline only. At a group level, patients with AD (prodromal or dementia) showed unchanged [F-18]THK5317 retention over time, in contrast to significant decreases in [F-18]FDG uptake in temporoparietal areas. The pattern of changes in [F-18]THK5317 retention was heterogeneous across all patients, with qualitative differences both between the two AD groups (prodromal and dementia) and among individual patients. High [F-18]THK5317 retention was significantly associated over time with low episodic memory encoding scores, while low [F-18]FDG uptake was significantly associated over time with both low global cognition and episodic memory encoding scores. Both patients with corticobasal syndrome had a negative [C-11]PIB scan, high [F-18]THK5317 retention with a different regional distribution from that in AD, and a homogeneous pattern of increased [F-18]THK5317 retention in the basal ganglia over time. These findings highlight the heterogeneous propagation of tau pathology among patients with symptomatic AD, in contrast to the homogeneous changes seen in glucose metabolism, which better tracked clinical progression.
  •  
7.
  • Jonasson, My, et al. (author)
  • Optimal timing of tau pathology imaging and automatic extraction of a reference region using dynamic [18F]THK5317 PET
  • 2019
  • In: NeuroImage. - : Elsevier BV. - 2213-1582. ; 22
  • Journal article (peer-reviewed)abstract
    • [F-18]THK5317 is a PET tracer for in-vivo imaging of tau associated with Alzheimer's disease (AD). This work aimed to evaluate optimal timing for standardized uptake value ratio (SUVR) measures with [F-18]THK5317 and automated generation of SUVR-1 and relative cerebral blood flow (R-1) parametric images. Nine AD patients and nine controls underwent 90 min [F-18]THK5317 scans. SUVR-1 was calculated at transient equilibrium (TE) and for seven different 20 min intervals and compared with distribution volume ratio (DVR; reference Logan). Cerebellar grey matter (MRI) was used as reference region. A supervised cluster analysis (SVCA) method was implemented to automatically generate a reference region, directly from the dynamic PET volume without the need of a structural MRI scan, for computation of SUVR-1 and R-1 images for a scan duration matching the optimal timing. TE was reached first in putamen, frontal- and parietal cortex at 22 +/- 4 min for AD patients and in putamen at 20 +/- 0 min in controls. Over all regions and subjects, SUVR20-40-1 correlated best with DVR-1, R-2 = 0.97. High correlation was found between values generated using MRI- and SVCA-based reference (R-2 = 0.93 for SUVR20-40-1; R-2 = 0.94 for R-1). SUVR20-40 allows for accurate semi-quantitative assessment of tau pathology and SVCA may be used to obtain a reference region for calculation of both SUVR-1 and R-1 with 40 min scan duration.
  •  
8.
  •  
9.
  • Jonasson, My, et al. (author)
  • Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology.
  • 2016
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:4, s. 574-581
  • Journal article (peer-reviewed)abstract
    • Because a correlation between tau pathology and the clinical symptoms of Alzheimer's disease (AD) has been hypothesized, there is increasing interest in developing PET tracers that bind specifically to tau protein. The aim of this study was to evaluate tracer kinetic models for quantitative analysis and generation of parametric images for the novel tau ligand (S)-(18)F-THK5117.METHODS: 9 subjects (5 with AD, 4 with mild cognitive impairment) received a 90 min dynamic (S)-(18)F-THK5117 PET scan. Arterial blood was sampled for measurement of blood radioactivity and metabolite analysis. VOI-based analysis was performed using plasma-input models; single-tissue and two-tissue (2TCM) compartment models and plasma-input Logan, and reference tissue models; simplified reference tissue model (SRTM), reference Logan and standardised uptake value ratio (SUVr). Cerebellum grey matter was used as reference region. Voxel-level analysis was performed using basis function implementations of SRTM, reference Logan and SUVr. Regionally averaged voxel values were compared to VOI-based values from the optimal reference tissue model and simulations were made to assess accuracy and precision. In addition to 90 min, initial 40 and 60 min data were analysed.RESULTS: Plasma-input Logan distribution volume ratio (DVR)-1 values agreed well with 2TCM DVR-1 values (R2=0.99, slope=0.96). SRTM binding potential (BPND) and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 (R2=1.00, slope≈1.00) while SUVr70-90-1 values correlated less well and overestimated binding. Agreement between parametric methods and SRTM was best for reference Logan (R2=0.99, slope=1.03). SUVr70-90-1 values were almost 3 times higher than BPND values in white matter and 1.5 times higher in grey matter. Simulations showed poorer accuracy and precision for SUVr70-90-1 values than for the other reference methods. SRTM BPND and reference Logan DVR-1 values were not affected by a shorter scan duration of 60 min.CONCLUSION: SRTM BPND and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 values. VOI-based data analyses indicated robust results for scan durations of 60 min. Reference Logan generated quantitative (S)-(18)F-THK5117 DVR-1 parametric images with the greatest accuracy and precision, and with a much lower white matter signal than seen with SUVr-1 images.
  •  
10.
  • Kehler, Jan, et al. (author)
  • Discovery and Development of C-11-Lu AE92686 as a Radioligand for PET Imaging of Phosphodiesterase10A in the Brain
  • 2014
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:9, s. 1513-1518
  • Journal article (peer-reviewed)abstract
    • Phosphodiesterase 10A (PDE10A) plays a key role in the regulation of brain striatal signaling, and several pharmaceutical companies currently investigate PDE10A inhibitors in clinical trials for various central nervous system diseases. A PDE10A PET ligand may provide evidence that a clinical drug candidate reaches and binds to the target. Here we describe the successful discovery and initial validation of the novel radiolabeled PDE10A ligand 5,8-dimethyl-2-[2-((1-C-11-methyl)-4-phenyl-1H-imidazol-2-yl)-ethyl]-[1,2,4]triazolo[1,5-a]pyridine (C-11-Lu AE92686) and its tritiated analog H-3-Lu AE92686. Methods: Initial in vitro experiments suggested Lu AE92686 as a promising radioligand, and the corresponding tritiated and C-11-labeled compounds were synthesized. 3H-Lu AE92686 was evaluated as a ligand for in vivo occupancy studies in mice and rats, and C-11-Lu AE92686 was evaluated as a PET tracer candidate in cynomolgus monkeys and in humans. Results: C-11-Lu AE92686 displayed high specificity and selectivity for PDE10A-expressing regions in the brain of cynomolgus monkeys and humans. Similar results were found in rodents using 3H-Lu AE92686. The binding of C-11-Lu AE92686 and 3H-Lu AE92686 to striatum was completely and dose-dependently blocked by the structurally different PDE10A inhibitor 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (MP-10) in rodents and in monkeys. In all species, specific binding of the radioligand was seen in the striatum but not in the cerebellum, supporting the use of the cerebellum as a reference region. The binding potentials (BPND) of C-11-Lu AE92686 in the striatum of both cynomolgus monkeys and humans were evaluated by the simplified reference tissue model with the cerebellum as the reference tissue, and BPND was found to be high and reproducible-that is, BP(ND)s were 6.5 +/- 0.3 (n = 3) and 7.5 +/- 1.0 (n = 12) in monkeys and humans, respectively. Conclusion: Rodent, monkey, and human tests of labeled Lu AE92686 suggest that C-11-Lu AE92686 has great potential as a human PET tracer for the PDE10A enzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19
Type of publication
Type of content
peer-reviewed (16)
other academic/artistic (3)
Author/Editor
Antoni, Gunnar (18)
Lubberink, Mark (18)
Jonasson, My (7)
Larsson, Elna-Marie (5)
Nordberg, Agneta (4)
show more...
Eriksson, Jonas (4)
Almkvist, Ove (3)
Nordberg, A (3)
Ekselius, Lisa (3)
Marklund, Niklas (3)
Tegner, Yelverton, P ... (3)
Persson, Jonas (3)
Fahlström, Markus (3)
Haller, Sven (3)
Saint-Aubert, L (3)
Johansson, Jakob (3)
Boden, Robert (3)
Thibblin, Alf (3)
Chiotis, K (3)
Sörensen, Jens (2)
Leuzy, Antoine (2)
Borg, Beatrice (2)
Estrada, Sergio (2)
Bodén, Robert, 1973- (2)
Persson, Jonas, 1983 ... (2)
Savitcheva, Irina (2)
Nielsen, J. (1)
Fällmar, David (1)
Blennow, Kaj (1)
Larsson, Eva (1)
Hellman, Per (1)
Bang-Andersen, B (1)
Axelson, Hans W. (1)
Gingnell, Malin, 198 ... (1)
Rodriguez-Vieitez, E ... (1)
Savitcheva, I (1)
Brown, Morris (1)
Heurling, Kerstin (1)
Sundin, Anders, 1954 ... (1)
Andersen, Pia (1)
Zetterberg, Henrik (1)
Jelic, Vesna (1)
Leuzy, A. (1)
Latini, Francesco, P ... (1)
Åkerström, Tobias (1)
Nielsen, Jacob (1)
Rodriguez-Vieitez, E (1)
Steiniger-Brach, B. (1)
Thörnblom, Elin (1)
show less...
University
Uppsala University (19)
Karolinska Institutet (7)
Luleå University of Technology (3)
Stockholm University (3)
Lund University (3)
University of Gothenburg (1)
Language
English (19)
Research subject (UKÄ/SCB)
Medical and Health Sciences (17)
Natural sciences (1)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view