SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lubberink Mark) ;pers:(Boellaard Ronald)"

Sökning: WFRF:(Lubberink Mark) > Boellaard Ronald

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knudsen, Gitte M, et al. (författare)
  • Guidelines for the content and format of PET brain data in publications and archives : A consensus paper
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 40:8, s. 1576-1585
  • Tidskriftsartikel (refereegranskat)abstract
    • It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
  •  
2.
  • Danad, Ibrahim, et al. (författare)
  • Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient : a [O-15]H2O PET study
  • 2014
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 35:31, s. 2094-U149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Myocardial ischaemia occurs principally in the subendocardial layer, whereas conventional myocardial perfusion imaging provides no information on the transmural myocardial blood flow (MBF) distribution. Subendocardial perfusion measurements and quantification of the transmural perfusion gradient (TPG) could be more sensitive and specific for the detection of coronary artery disease (CAD). The current study aimed to determine the impact of lesion severity as assessed by the fractional flow reserve (FFR) on subendocardial perfusion and the TPG using [O-15]H2O positron emission tomography (PET) imaging in patients evaluated for CAD. Methods and results Sixty-six patients with anginal chest pain were prospectively enrolled and underwent [O-15] H2O myocardial perfusion PET imaging. Subsequently, invasive coronary angiography was performed and FFR obtained in all coronary arteries irrespective of the PET imaging results. Thirty (45%) patients were diagnosed with significant CAD(i.e. FFR <= 0.80), whereas on a per vessel analysis (n = 198), 53 (27%) displayed a positive FFR. Transmural hyperaemic MBF decreased significantly from 3.09 +/- 1.16 to 1.67 +/- 0.57 mL min(-1) g(-1) (P < 0.001) in non-ischaemic and ischaemic myocardium, respectively. The TPG decreased during hyperaemia when compared with baseline (1.20 +/- 0.14 vs. 0.94 +/- 0.17, P < 0.001), and was lower in arteries with a positive FFR (0.97 +/- 0.16 vs. 0.88 +/- 0.18, P < 0.01). ATPG threshold of 0.94 yielded an accuracy to detect CAD of 59%, which was inferior to transmural MBF with an optimal cutoff of 2.20 mL min(-1) g(-1) and an accuracy of 85% (P < 0.001). Diagnostic accuracy of subendocardial perfusion measurements was comparable with transmural MBF (83 vs. 85%, respectively, P = NS). Conclusion Cardiac [O-15]H2O PET imaging is able to distinguish subendocardial from subepicardial perfusion in the myocardium of normal dimensions. Hyperaemic TPG is significantly lower in ischaemic myocardium. This technique can potentially be employed to study subendocardial perfusion impairment in more detail. However, the diagnostic accuracy of subendocardial hyperaemic perfusion and TPG appears to be limited compared with quantitative transmural MBF, warranting further study.
  •  
3.
  • Golla, Sandeep S. V., et al. (författare)
  • Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising
  • 2017
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deconvolution also increases noise, which results in lower signal-to-noise ratios (SNR). The aim of this study was to implement IDM in combination with HighlY constrained back-PRojection (HYPR) denoising to mitigate poor SNR properties of conventional IDM.METHODS: An anthropomorphic Hoffman brain phantom was filled with an [18F]FDG solution of ~25 kBq mL-1 and scanned for 30 min on a Philips Ingenuity TF PET/CT scanner (Philips, Cleveland, USA) using a dynamic brain protocol with various frame durations ranging from 10 to 300 s. Van Cittert IDM was used for PVC of the scans. In addition, HYPR was used to improve SNR of the dynamic PET images, applying it both before and/or after IDM. The Hoffman phantom dataset was used to optimise IDM parameters (number of iterations, type of algorithm, with/without HYPR) and the order of HYPR implementation based on the best average agreement of measured and actual activity concentrations in the regions. Next, dynamic [11C]flumazenil (five healthy subjects) and [11C]PIB (four healthy subjects and four patients with Alzheimer's disease) scans were used to assess the impact of IDM with and without HYPR on plasma input-derived distribution volumes (VT) across various regions of the brain.RESULTS: In the case of [11C]flumazenil scans, Hypr-IDM-Hypr showed an increase of 5 to 20% in the regional VT whereas a 0 to 10% increase or decrease was seen in the case of [11C]PIB depending on the volume of interest or type of subject (healthy or patient). References for these comparisons were the VTs from the PVE-uncorrected scans.CONCLUSIONS: IDM improved quantitative accuracy of measured activity concentrations. Moreover, the use of IDM in combination with HYPR (Hypr-IDM-Hypr) was able to correct for PVE without increasing noise.
  •  
4.
  • Lubberink, Mark, et al. (författare)
  • Myocardial Oxygen Extraction Fraction Measured Using Bolus Inhalation of O-15-Oxygen Gas and Dynamic PET
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:1, s. 60-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to determine the accuracy of oxygen extraction fraction (OEF) measurements using a dynamic scan protocol after bolus inhalation of O-15(2). The method of analysis was optimized by investigating potential reuse of myocardial blood flow (MBF), perfusable tissue fraction, and blood and lung spillover factors derived from separate O-15-water and (CO)-O-15 scans. Methods: Simulations were performed to assess the accuracy and precision of OEF for a variety of models in which different parameters from O-15-water and (CO)-O-15 scans were reused. Reproducibility was assessed in 8 patients who underwent one 10-min dynamic scan after bolus injection of 1.1 GBq of O-15-water, two 10-min dynamic scans after bolus inhalation of 1.4 GBq of O-15(2), and a 6-min static scan after bolus inhalation of 0.8 GBq of (CO)-O-15 for region-of-interest definition. Results: Simulations showed that accuracy and precision were lowest when all parameters were determined from the O-15(2) scan. The optimal accuracy and precision of OEF were obtained when fixing MBF, perfusable tissue fraction, and blood spillover to values derived from a O-15-water scan and estimating spillover from the pulmonary gas volume using an attenuation map. Optimal accuracy and precision were confirmed in the patient study, showing an OEF test-retest variability of 13% for the whole myocardium. Correction of spillover from pulmonary gas volume requires correction of the lung time-activity curve for pulmonary blood volume, which could equally well be obtained from a O-15-water rather than (CO)-O-15 scan. Conclusion: Measurement of OEF is possible using bolus inhalation of O-15(2) and a dynamic scan protocol, with optimal accuracy and precision when other relevant parameters, such as MBF, are derived from an additional O-15-water scan.
  •  
5.
  • van Assema, Danielle M. E., et al. (författare)
  • No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer's disease patients with microbleeds
  • 2012
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 32:8, s. 1468-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased blood-brain barrier P-glycoprotein (Pgp) function has been shown in Alzheimer's disease (AD) patients using positron emission tomography (PET) with the radiotracer (R)-[C-11] verapamil. Decreased Pgp function has also been hypothesized to promote cerebral amyloid angiopathy (CAA) development. Here, we used PET and (R)-[C-11] verapamil to assess Pgp function in eighteen AD patients, of which six had microbleeds (MBs), presumably reflecting underlying CAA. No differences were found in binding potential and nonspecific volume of distribution of (R)-[C-11] verapamil between patient groups. These results provide no evidence for additional Pgp dysfunction in AD patients with MBs.
  •  
6.
  • van Assema, Danielle M. E., et al. (författare)
  • P-Glycoprotein Function at the Blood-Brain Barrier : Effects of Age and Gender
  • 2012
  • Ingår i: Molecular Imaging and Biology. - : Springer Science and Business Media LLC. - 1536-1632 .- 1860-2002. ; 14:6, s. 771-776
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeP-glycoprotein (Pgp) is an efflux transporter involved in transport of several compounds across the blood–brain barrier (BBB). Loss of Pgp function with increasing age may be involved in the development of age-related disorders, but this may differ between males and females. Pgp function can be quantified in vivo using (R)-[11C]verapamil and positron emission tomography. The purpose of this study was to assess global and regional effects of both age and gender on BBB Pgp function.ProceduresThirty-five healthy men and women in three different age groups were included. Sixty minutes dynamic (R)-[11C]verapamil scans with metabolite-corrected arterial plasma input curves were acquired. Grey matter time–activity curves were fitted to a validated constrained two-tissue compartment plasma input model, providing the volume of distribution (V T) of (R)-[11C]verapamil as outcome measure.ResultsIncreased V T of (R)-[11C]verapamil with aging was found in several large brain regions in men. Young and elderly women showed comparable V T values. Young women had higher V T compared with young men.ConclusionsDecreased BBB Pgp is found with aging; however, effects of age on BBB Pgp function differ between men and women.
  •  
7.
  • van Assema, Daniëlle Me, et al. (författare)
  • Reproducibility of quantitative (R)-[11C]verapamil studies
  • 2012
  • Ingår i: EJNMMI Research. - 2191-219X. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundP-glycoprotein [Pgp] dysfunction may be involved in neurodegenerative diseases, such as Alzheimer's disease, and in drug resistant epilepsy. Positron emission tomography using the Pgp substrate tracer (R)-[11C]verapamil enables in vivo quantification of Pgp function at the human blood-brain barrier. Knowledge of test-retest variability is important for assessing changes over time or after treatment with disease-modifying drugs. The purpose of this study was to assess reproducibility of several tracer kinetic models used for analysis of (R)-[11C]verapamil data.MethodsDynamic (R)-[11C]verapamil scans with arterial sampling were performed twice on the same day in 13 healthy controls. Data were reconstructed using both filtered back projection [FBP] and partial volume corrected ordered subset expectation maximization [PVC OSEM]. All data were analysed using single-tissue and two-tissue compartment models. Global and regional test-retest variability was determined for various outcome measures.ResultsAnalysis using the Akaike information criterion showed that a constrained two-tissue compartment model provided the best fits to the data. Global test-retest variability of the volume of distribution was comparable for single-tissue (6%) and constrained two-tissue (9%) compartment models. Using a single-tissue compartment model covering the first 10 min of data yielded acceptable global test-retest variability (9%) for the outcome measure K1. Test-retest variability of binding potential derived from the constrained two-tissue compartment model was less robust, but still acceptable (22%). Test-retest variability was comparable for PVC OSEM and FBP reconstructed data.ConclusionThe model of choice for analysing (R)-[11C]verapamil data is a constrained two-tissue compartment model.
  •  
8.
  •  
9.
  • van der Vos, Charlotte S, et al. (författare)
  • Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET
  • 2017
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 44:Suppl 1, s. S4-S16
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, there have been multiple advances in positron emission tomography/computed tomography (PET/CT) that improve cancer imaging. The present generation of PET/CT scanners introduces new hardware, software, and acquisition methods. This review describes these new developments, which include time-of-flight (TOF), point-spread-function (PSF), maximum-a-posteriori (MAP) based reconstruction, smaller voxels, respiratory gating, metal artefact reduction, and administration of quadratic weight-dependent (18)F-fluorodeoxyglucose (FDG) activity. Also, hardware developments such as continuous bed motion (CBM), (digital) solid-state photodetectors and combined PET and magnetic resonance (MR) systems are explained. These novel techniques have a significant impact on cancer imaging, as they result in better image quality, improved small lesion detectability, and more accurate quantification of radiopharmaceutical uptake. This influences cancer diagnosis and staging, as well as therapy response monitoring and radiotherapy planning. Finally, the possible impact of these developments on the European Association of Nuclear Medicine (EANM) guidelines and EANM Research Ltd. (EARL) accreditation for FDG-PET/CT tumor imaging is discussed.
  •  
10.
  • Wolfensberger, Saskia P, et al. (författare)
  • Quantification of the neurokinin 1 receptor ligand [¹¹C]R116301
  • 2011
  • Ingår i: Nuclear medicine communications. - 0143-3636 .- 1473-5628. ; 32:10, s. 896-902
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE:Neurokinin 1 (NK1) receptors have been implicated in depression, anxiety, and pain perception. Recently, it was shown that, in the human brain, a specific NK1 receptor-related signal was obtained with the novel radioligand, [¹¹C]R116301, using positron emission tomography. The purpose of this study was to evaluate various methods for quantifying specific [¹¹C]R116301 binding.METHODS:Two dynamic 90-min [¹¹C]R116301 scans, separated by 5 h, were performed in 11 healthy volunteers. In three patients, the second scan was performed after an oral blocking dose of 125 mg of aprepitant, whereas in the other eight, no intervention was performed (test-retest). Whole striatum was used as the tissue of interest, as it has the highest density of NK1 receptors. Cerebellum was used as the reference tissue.RESULTS:Reference tissue models were stable with the simplified reference tissue model (SRTM) performing best. Average (± standard deviation) SRTM-derived mean nondisplaceable binding potential (BP(ND)) of all (first) baseline scans was 0.64±0.31 (n=11), which reduced to -0.01±0.03 (n=3) after aprepitant administration. Test-retest results showed low variability (14.0±10.7%) and excellent reliability, as indicated by the intraclass correlation coefficient (0.93). The ratio of standardized uptake values of striatum and cerebellum minus 1, an approximation of BP(ND), showed very low variability (6.2±3.1%) with excellent reliability (intraclass correlation coefficient=0.98), and correlated well with SRTM-derived BP(ND) (R²=0.96).CONCLUSION:SRTM is the model of choice for quantifying [¹¹C]R116301 binding. Semiquantitative tissue ratios hold promise for routine clinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lubberink, Mark (10)
Lammertsma, Adriaan ... (8)
Scheltens, Philip (4)
Windhorst, Albert D (4)
Schuit, Robert C (3)
visa fler...
van Berckel, Bart N. ... (3)
Knaapen, Paul (2)
Veronese, Mattia (1)
van der Flier, Wiesj ... (1)
van Royen, Niels (1)
Airaksinen, Anu J. (1)
Catana, Ciprian (1)
Halldin, Christer (1)
Lanzenberger, Rupert (1)
Yaqub, Maqsood (1)
van Berckel, Bart N. (1)
Van Berckel, Bart (1)
Rosa-Neto, Pedro (1)
Matheson, Granville ... (1)
Veltman, Dick J (1)
van der Flier, Wiesj ... (1)
Nichols, Thomas E. (1)
Heymans, Martijn W (1)
Gee, Antony D. (1)
Pike, Victor W. (1)
Golla, Sandeep S.V. (1)
Appelhoff, Stefan (1)
Danad, Ibrahim (1)
Raijmakers, Pieter G ... (1)
Harms, Hendrik J. (1)
van Rossum, Albert C ... (1)
Mann, J John (1)
Vonk-Noordegraaf, An ... (1)
Bormans, Guy (1)
Schain, Martin (1)
Price, Julie (1)
Doudet, Doris (1)
Knudsen, Gitte M (1)
Ganz, Melanie (1)
Carson, Richard E (1)
Greve, Douglas N (1)
Gunn, Roger N (1)
Herscovitch, Peter (1)
Huang, Henry (1)
Keller, Sune H. (1)
Liow, Jeih-San (1)
Lohith, Talakad G (1)
Lyoo, Chul H (1)
Nørgaard, Martin (1)
visa färre...
Lärosäte
Uppsala universitet (10)
Karolinska Institutet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy