SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ludolph Albert C) ;pers:(Kassubek Jan)"

Search: WFRF:(Ludolph Albert C) > Kassubek Jan

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wiesner, Diana, et al. (author)
  • Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration.
  • 2015
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:8, s. 2228-2240
  • Journal article (peer-reviewed)abstract
    • Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.
  •  
2.
  • Braunstein, Kerstin E., et al. (author)
  • A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons
  • 2010
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:22, s. 4385-4398
  • Journal article (peer-reviewed)abstract
    • The molecular motor dynein and its associated regulatory subunit dynactin have been implicated in several neurodegenerative conditions of the basal ganglia, such as Huntington's disease (HD) and Perry syndrome, an atypical Parkinson-like disease. This pathogenic role has been largely postulated from the existence of mutations in the dynactin subunit p150(Glued). However, dynactin is also able to act independently of dynein, and there is currently no direct evidence linking dynein to basal ganglia degeneration. To provide such evidence, we used here a mouse strain carrying a point mutation in the dynein heavy chain gene that impairs retrograde axonal transport. These mice exhibited motor and behavioural abnormalities including hindlimb clasping, early muscle weakness, incoordination and hyperactivity. In vivo brain imaging using magnetic resonance imaging showed striatal atrophy and lateral ventricle enlargement. In the striatum, altered dopamine signalling, decreased dopamine D1 and D2 receptor binding in positron emission tomography SCAN and prominent astrocytosis were observed, although there was no neuronal loss either in the striatum or substantia nigra. In vitro, dynein mutant striatal neurons displayed strongly impaired neuritic morphology. Altogether, these findings provide a direct genetic evidence for the requirement of dynein for the morphology and function of striatal neurons. Our study supports a role for dynein dysfunction in the pathogenesis of neurodegenerative disorders of the basal ganglia, such as Perry syndrome and HD.
  •  
3.
  •  
4.
  •  
5.
  • Dorst, Johannes, et al. (author)
  • Metabolic alterations precede neurofilament changes in presymptomatic ALS gene carriers
  • 2023
  • In: EBioMedicine. - : Elsevier. - 2352-3964. ; 90
  • Journal article (peer-reviewed)abstract
    • Background: The emergence of potentially effective new therapies for genetic forms of amyotrophic lateral sclerosis (ALS) necessitates the identification of biomarkers to facilitate early treatment, prior to the onset of motor symptoms. Here, we sought to investigate whether metabolic alterations are detectable in presymptomatic ALS gene mutation carriers, and whether such alterations precede neurofilament light chain (NfL) changes in serum.Methods: Between 02/2014 and 11/2021, we prospectively studied 60 presymptomatic ALS gene mutation carriers (40% male, age 48.7 ± 14.9; 28 C9orf72, 22 SOD1, 10 other) compared to 73 individuals from the same families (47% male, age 47.4 ± 12.9) without pathogenic mutations as controls. Bioimpedance analysis (BIA) and indirect calorimetry were performed, and Body Mass Index (BMI), Fat Mass (FM), Body Fat Percentage, Body Water (BW), Lean Body Mass (LBM), Extracellular Mass (ECM), Body Cell Mass (BCM), ECM/BCM ratio, Cells Percentage, Phase Angle, Resting Metabolic Rate (RMR), Metabolic Ratio (MR), and NfL were measured. Participants and evaluators were blinded regarding gene carrier status.Findings: Presymptomatic ALS gene carriers showed reduced LBM (p = 0.02), BCM (p = 0.004), Cells Percentage (p = 0.04), BW (p = 0.02), Phase Angle (p = 0.04), and increased ECM/BCM ratio (p = 0.04), consistently indicating a loss of metabolically active body cells. While in C9orf72 mutation carriers all tissue masses were reduced, only metabolically active tissue was affected in SOD1 mutation carriers. Unexpectedly, RMR (p = 0.009) and MR (p = 0.01) were lower in presymptomatic ALS gene carriers compared to non-carriers. NfL serum levels were similar in mutation carriers and non-carriers (p = 0.60).Interpretation: The observed metabolic phenomena might reflect reduced physical activity and/or preemptive, insufficient compensatory mechanisms to prepare for the later hypermetabolic state. As pre-symptomatic biomarkers we propose ECM/BCM ratio and Phase Angle for SOD1, and a 4-compartment affection in BIA for C9orf72 mutation carriers.
  •  
6.
  • Forsberg, Karin, et al. (author)
  • Endothelial damage, vascular bagging and remodeling of the microvascular bed in human microangiopathy with deep white matter lesions
  • 2018
  • In: Acta neuropathologica communications. - : BioMed Central. - 2051-5960. ; 6
  • Journal article (peer-reviewed)abstract
    • White matter lesions (WMLs) are a common manifestation of small vessel disease (SVD) in the elderly population. They are associated with an enhanced risk of developing gait abnormalities, poor executive function, dementia, and stroke with high mortality. Hypoperfusion and the resulting endothelial damage are thought to contribute to the development of WMLs. The focus of the present study was the analysis of the microvascular bed in SVD patients with deep WMLs (DWMLs) by using double- and triple-label immunohistochemistry and immunofluorescence. Simultaneous visualization of collagen IV (COLL4)-positive membranes and the endothelial glycocalyx in thick sections allowed us to identify endothelial recession in different types of string vessels, and two new forms of small vessel/capillary pathology, which we called vascular bagging and ghost string vessels. Vascular bags were pouches and tubes that were attached to vessel walls and were formed by multiple layers of COLL4-positive membranes. Vascular bagging was most severe in the DWMLs of cases with pure SVD (no additional vascular brain injury, VBI). Quantification of vascular bagging, string vessels, and the density/size of CD68-positive cells further showed widespread pathological changes in the frontoparietal and/or temporal white matter in SVD, including pure SVD and SVD with VBI, as well as a significant effect of the covariate age. Plasma protein leakage into vascular bags and the white matter parenchyma pointed to endothelial damage and basement membrane permeability. Hypertrophic IBA1-positive microglial cells and CD68-positive macrophages were found in white matter areas covered with networks of ghost vessels in SVD, suggesting phagocytosis of remnants of string vessels. However, the overall vessel density was not altered in our SVD cohort, which might result from continuous replacement of vessels. Our findings support the view that SVD is a progressive and generalized disease process, in which endothelial damage and vascular bagging drive remodeling of the microvasculature.
  •  
7.
  • Gorges, Martin, et al. (author)
  • Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis
  • 2017
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 88:12, s. 1033-1041
  • Journal article (peer-reviewed)abstract
    • Objective: Our objective was to study the hypothalamic volume in a cohort of patients with amyotrophic lateral sclerosis (ALS) including symptomatic and presymptomatic ALS mutation carriers.Methods: High-resolution three-dimensional T1-weighted MRI datasets from 251 patients with sporadic ALS, 19 symptomatic and 32 presymptomatic ALS mutation carriers and 112 healthy controls (HC) were retrospectivally registered for manual delineation of the hypothalamus. The volume of the hypothalamus, in total or subdivided, was normalised to the intracranial volume and adjusted to age. Correlation analyses were performed with clinical and metabolic outcomes. Pathologically defined ALS stages were determined in vivo by diffusion tensor imaging (DTI).Results: We observed a severe atrophy of the hypothalamus both in patients with sporadic ALS (-21.8%, p<0.0001) and symptomatic ALS mutation carriers (-13.4%, p<0.001). The atrophy in patients with sporadic ALS was observed in both the anterior (-27.6% p<0.0001) and the posterior parts of the hypothalamus (-17.7%, p<0.0001). Notably, this atrophy was also observed in presymptomatic ALS mutation carriers (-15.5%, p<0.001) and was unrelated to whole brain volume atrophy or disease stage as assessed using DTI or functional status. Hypothalamic volume was correlated with body mass index (BMI) in patients with sporadic ALS (p=0.0434, Ρ=+0.1579), and this correlation was much stronger in patients with familial ALS (fALS) (p=0.0060, Ρ=+0.6053). Anterior hypothalamic volume was correlated with age at onset, but not with survival after MRI.Conclusions: Hypothalamus is atrophied in ALS, even in premorbid stages, and correlates with BMI, especially in fALS. Decreased anterior hypothalamic volume is associated with earlier onset of disease.
  •  
8.
  • Lulé, Dorothée E., et al. (author)
  • Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder
  • 2020
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 91:11, s. 1195-1200
  • Journal article (peer-reviewed)abstract
    • Background: A mutation in C9orf72 constitute a cross-link between amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). At clinical manifestation, both patient groups may present with either cognitive impairment of predominantly behaviour or language (in FTD) or motor dysfunctions (in ALS).Methods: In total, 36 non-symptomatic mutation carriers from ALS or FTD families were examined, including 21 subjects with C9orf72 and 15 with SOD1 mutations. Data were compared with 91 age-matched, education-matched and gender-matched healthy subjects (56 were first-degree relatives from ALS or FTD families, 35 with no known family history of ALS/FTD). MRI scanning for diffusion tensor imaging was performed to map fractional anisotropy (FA). Subjects performed an extensive neuropsychological assessment to address verbal fluency, language, executive, memory and visuospatial function. Measurements were repeated after 12 months.Results: C9orf72 expansion carriers performed significantly worse in verbal fluency and non-verbal memory and presented with distinct alterations in structural white matter integrity indicated by lower FA values in inferior and orbitofrontal cortical areas compared with carriers of SOD1 mutations or healthy subjects. Loss of structural integrity was associated with decreased verbal fluency performance. White matter alterations and cognitive performance showed no changes over 12 months in all subjects.Discussion: Reduced verbal fluency performance seems to be a distinct clinical feature of C9orf72 carriers before symptomatic disease onset without evidence for change over time in our cohort. The results support the emerging hypothesis of a general disorder in development in addition to neurodegeneration in C9orf72 carriers.
  •  
9.
  • Rosenbohm, Angela, et al. (author)
  • Can lesions to the motor cortex induce amyotrophic lateral sclerosis?
  • 2014
  • In: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 261:2, s. 283-290
  • Journal article (peer-reviewed)abstract
    • A recent staging effort for amyotrophic lateral sclerosis (ALS) has demonstrated that the TDP-43 neuropathology may initiate focally in the motor cortex in the majority of patients. We searched our data bank for patients with lesions of the motor cortex which preceded disease onset. We performed a search of our patient- and MRI-data bank and screened 1,835 patients with amyotrophic lateral sclerosis for frontal lobe/motor cortex lesions. We found 18 patients with definite ALS who had documented and defined lesions of the motor cortex, which preceded the initial ALS symptoms by 8-42 years. In the vast majority (15/18) of the patients, the onset of ALS was closely related to the focal lesion since it started in a body region reflecting the damaged cortical area. The findings suggest that initial lesions to the motor cortex may be a contributing initiating factor in some patients with ALS or determine the site of onset in individuals pre-disposed to ALS.
  •  
10.
  • Steinacker, Petra, et al. (author)
  • Neurofilaments in the diagnosis of motoneuron diseases : a prospective study on 455 patients
  • 2016
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 87:1, s. 12-20
  • Journal article (peer-reviewed)abstract
    • Objectives Biomarkers for the diagnosis of motoneuron diseases (MND) are urgently needed to improve the diagnostic pathway, patient stratification and monitoring. The aim of this study was to validate candidate markers for MND in cerebrospinal fluid (CSF) and specify cut-offs based on large patient cohorts by especially considering patients who were seen under the initial differential diagnosis (MND mimics). Methods In a prospective study, we investigated CSF of 455 patients for neurofilament light chain (NfL), phosphorylated heavy chain (pNfH), tau protein (Tau) and phospho-tau protein (pTau). Analysed cohorts included patients with apparently sporadic and familial amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) (MND, n=253), MND mimics (n=85) and neurological control groups. Cut-off values were specified, and diagnostic performance and correlation with progression were analysed. Results Nfs were significantly higher in the MND group compared to the control groups, whereas Tau and pTau did not differ. At a cut-off level of 2200 pg/mL for NfL, a 77% diagnostic sensitivity (CI 71% to 82%), 85% specificity (CI 79% to 90%) and 87% positive predictive value (PPV) (CI 81% to 91%) were achieved. For pNfH, we calculated 83% sensitivity (CI 78% to 88%), 77% specificity (CI 71% to 83%) and 82% PPV (CI 77% to 86%) at 560 pg/mL. There were no significant differences between sporadic and genetic ALS or PLS. Nf levels were elevated at early disease stage, and correlated moderately with MND progression and duration. Conclusions Neurofilaments in CSF have a high relevance for the differential diagnosis of MNDs and should be included in the diagnostic work-up of patients. Their value as prognostic markers should be investigated further.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view