SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lunnan Ragnhild) ;pers:(Blagorodnova N.)"

Search: WFRF:(Lunnan Ragnhild) > Blagorodnova N.

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blagorodnova, N., et al. (author)
  • iPTF16fnl : A Faint and Fast Tidal Disruption Event in an E plus A Galaxy
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 844:1
  • Journal article (peer-reviewed)abstract
    • We present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute mag M-g = -17.2. The maximum bolometric luminosity (from optical and UV) was L-p similar or equal to (1.0 +/- 0.15) x 10(43) erg s(-1), an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with L proportional to e(-(t-t0)/T), where t(0) = 57631.0 (MJD) and tau similar or equal to 15 days. The X-ray shows a marginal detection at L-X = 2.4(-1.1)(1.9) x 10(39) erg s(-1) (Swift X-ray Telescope). No radio counterpart was detected down to 3s, providing upper limits for monochromatic radio luminosities of nu L-nu < 2.3 x 10(36) erg s(-1) and nLn < 1.7 x 10(37) erg s(-1) (Very Large Array, 6.1 and 22 GHz). The blackbody temperature, obtained from combined Swift UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and Ha emission lines, with FWHMs of about 14,000 km s(-1) and 10,000 km s(-1), respectively. He. I lines are also detected at lambda lambda 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of similar to 650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low-luminosity events may have gone unnoticed in previous searches.
  •  
2.
  • Hung, T., et al. (author)
  • Sifting for Sapphires : Systematic Selection of Tidal Disruption Events in iPTF
  • 2018
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 238:2
  • Journal article (peer-reviewed)abstract
    • We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg(2)), g+ R band, Intermediate Palomar Transient Factory experiment. Our selection targets typical optically selected TDEs: bright (> 60% flux increase) and blue transients residing in the centers of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher-precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5: 1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the Zwicky Transient Facility era. We measure a TDE per galaxy rate of 1.7(-1.3)(+2.9) 10(-4) gal yr(-1) (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, and thus may not reflect the total TDE population, which is yet to be fully mapped.
  •  
3.
  • Kupfer, T., et al. (author)
  • The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:1
  • Journal article (peer-reviewed)abstract
    • We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of P-orb = 44.66279 +/- 1.16 x 10(-4) minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, T-eff = 39 400 +/- 500 K and log g = 5.74 +/- 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass M-sdOB= 0.23 +/- 0.12 M-circle dot with a WD companion (M-WD = 0.72 +/- 0.17 M-circle dot). The mass ratio was found to be q = M-sdOB/M-WD = 0.32 +/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of approximate to 0.47 M-circle dot. To put constraints on the structure and evolutionary history of the sdOB star we compared the derived T-eff, log g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 M-circle dot, which left the common envelope approximate to 1.1 Myr ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
  •  
4.
  • Lunnan, Ragnhild, et al. (author)
  • A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova
  • 2018
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:11, s. 887-895
  • Journal article (peer-reviewed)abstract
    • Hydrogen-poor superluminous supernovae (SLSN-I) are a class of rare and energetic explosions that have been discovered in untargeted transient surveys in the past decade(1,2). The progenitor stars and the physical mechanism behind their large radiated energies (about 1O(51) erg or 1O(44) J) are both debated, with one class of models primarily requiring a large rotational energy(3,4) and the other requiring very massive progenitors that either convert kinetic energy into radiation through interaction with circumstellar material (CSM)(5-8 )or engender an explosion caused by pair-instability (loss of photon pressure due to particle-antiparticle production)(9,10). Observing the structure of the CSM around SLSN-I offers a powerful test of some scenarios, although direct observations are scarce(11,)(12). Here, we present a series of spectroscopic observations of the SLSN-I iPTF16eh, which reveal both absorption and time- and frequency-variable emission in the Mg n resonance doublet. We show that these observations are naturally explained as a resonance scattering light echo from a circumstellar shell. Modelling the evolution of the emission, we infer a shell radius of 0.1 pc and velocity of 3,300 km s(-1), implying that the shell was ejected three decades before the supernova explosion. These properties match theoretical predictions of shell ejections occurring because of pulsational pair-instability and imply that the progenitor had a helium core mass of about 50-55 M-circle dot, corresponding to an initial mass of about 115 M-circle dot.
  •  
5.
  • Pian, E., et al. (author)
  • PTF11rka : an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 497:3, s. 3542-3556
  • Journal article (peer-reviewed)abstract
    • The hydrogen-poor supernova (SN) PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 December 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the RPTF filter band, and maximum in this band was reached ∼30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ∼10 M⊙ carbon–oxygen core evolved from a progenitor of main-sequence mass 25–40 M⊙, that liberated a kinetic energy Ek≈4 × 1051 erg, expelled ∼8 M⊙ of ejecta, and synthesized ∼0.5 M⊙ of 56Ni. The photospheric spectra of PTF11rka are characterized by narrow absorption lines that point to suppression of the highest ejecta velocities (≳ 15 000 km s−1). This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (∼5 × 1050 erg), less than 2 per cent of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst SNe in luminosity, although it has a lower energy and a lower Ek/Mej ratio.
  •  
6.
  • Whitesides, L., et al. (author)
  • iPTF 16asu : A Luminous, Rapidly Evolving, and High-velocity Supernova
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:2
  • Journal article (peer-reviewed)abstract
    • Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here we present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova ( SN). With a rest-frame rise time of just four. days and a peak absolute magnitude of M-g = -20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by Ni-56 decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view