SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo L.) srt2:(2015-2019);hsvcat:2"

Sökning: WFRF:(Luo L.) > (2015-2019) > Teknik

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
2.
  • Wang, Chenglong, et al. (författare)
  • Experimental and numerical investigation of outlet guide vane and endwall heat transfer with various inlet flow angles
  • 2016
  • Ingår i: International Journal of Heat and Mass Transfer. - : Elsevier BV. - 0017-9310. ; 95, s. 355-367
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the heat transfer on the outlet guide vane (OGV) surface and its endwall region. The Reynolds number is fixed at 300,000 and the flow is subsonic. The inlet flow angle is varied from +25 degrees (on-design), to +40 degrees and -25 degrees (off-design). Experiments were conducted in a linear cascade test facility using thermochromic liquid crystal technique. Numerical simulations using RANS were carried out with three turbulence models, i.e., standard k-omega model (k-omega), baseline k-omega model (BSL), and shear stress transport k-omega model (SST). Both the experimental and numerical results are provided and compared. On the OGV surface, boundary layer transition and separation affect the heat transfer significantly and they vary with the inlet flow angle. The abilities of the three models to predict these heat transfer behaviors are revealed. For the on-design case, both BSL and SST models capture the main feature of the heat transfer variations due to transition, but the k-omega model fails. For off-design cases where separation occurs, there are discrepancies found between the calculations and experimental data. On the endwall region, the effects of a horseshoe vortex (HV) on the heat transfer are clearly noticed at the leading edge (LE). The three models perform well to simulate the pitchwise averaged Nusselt number while they always over-predict the strength and size of the HV, which leads to higher heat transfer there compared to the measurements. For off-design conditions, the HV becomes more energetic than that of the on design condition and the pressure side leg departs from the OGV at the inlet flow angle alpha = -25 degrees
  •  
3.
  • Chen, Si, 1981, et al. (författare)
  • Sn-3.0Ag-0.5Cu Nanocomposite Solder Reinforced With Bi2Te3 Nanoparticles
  • 2015
  • Ingår i: IEEE Transactions on Components, Packaging and Manufacturing Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 2156-3985 .- 2156-3950. ; 5:8, s. 1186-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposite solders are regarded as one of the most promising interconnect materials for the high-density electronic packaging due to their high mechanical strength and fine microstructure. However, the developments of nanocomposite solders have been limited by the inadequate compatibility between nanoparticles and solder matrix with respect to density, hardness, coefficient of thermal expansion, and surface activity. The compatibility issue will lead to a huge loss of nanoparticles from the solder matrix after the reflow soldering process. The thermal fatigue resistance of solder joint will also become degraded. Therefore, aiming to solve this problem, a novel nanocomposite solder consisting of Bi2Te3 semiconductor nanoparticles and Sn-3.0Ag-0.5Cu (SAC305) solder is presented. The effect of nanoparticles on the viscosity of solder paste and the void content of solder bump was first studied. Then, a series of analysis on the composition and microstructure of the solder bump were completed using transmission electron microscopy, X-ray diffraction, inductively coupled plasma-mass spectrometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The survival rate of nanoparticles in the solder bump after reflow soldering process reaches as high as 80%. The refined microstructure was observed from the cross section of the nanocomposite solders. The shear test showed that the average mechanical strength of SAC305 solder after the addition of Bi2Te3 nanoparticles was higher. Meanwhile, no thermal fatigue resistance degradation was detected in the nanocomposite solder after 1000 thermal cycles in the range of -40 degrees C to 115 degrees C.
  •  
4.
  • Sun, Shuangxi, 1986, et al. (författare)
  • Mechanical and thermal characterization of a novel nanocomposite thermal interface material for electronic packaging
  • 2016
  • Ingår i: Microelectronics and Reliability. - : Elsevier BV. - 0026-2714. ; 56, s. 129-135
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a novel nanocomposite thermal interface material (Nano-TIM) consisting of a silver coated polyimide network and the indium matrix. One of the potential applications of this Nano-TIM is for heat dissipation in integrated circuits and electronic packaging. The shear strength of the Nano-TIM was investigated with DAGE-4000PSY shear tester. The shear strength of Nano-TIM is 4.5 MPa, which is 15% higher than that of the pure indium thermal interface material. The microstructure of cross-section and fracture surface was studied using Scanning Electron Microscopy (SEM). SEM pictures show a uniform polymer fiber distribution and solid interface between silver coated fibers and indium matrix. The thermal fatigue resistance of the Nano-TIM was evaluated by monitoring the variation of thermal interface resistance during the thermal cycling test (-40 to 125 degrees C). The thermal interface resistance was measured with a commercial xenon flash instrument after 100, 200, 300, 400, 500, and 1000 temperature cydes. The results-of thermal cycling test show that Nano-TIM presented consistent reliability performance with pure indium. Furthermore, the tooling effect of Nano-TIM was demonstrated through measuring the power chip temperature in the die attached structure by using an Infrared Camera. In the test, the Nano-TIM shows a comparable cooling effect to pure indium TIM for die attach applications in electronics packaging.
  •  
5.
  • Kristan, Matej, et al. (författare)
  • The Visual Object Tracking VOT2015 challenge results
  • 2015
  • Ingår i: Proceedings 2015 IEEE International Conference on Computer Vision Workshops ICCVW 2015. - : IEEE. - 9780769557205 ; , s. 564-586
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website(1).
  •  
6.
  • Luo, Xin, 1983, et al. (författare)
  • Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation
  • 2016
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454. ; 104, s. 109-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 degrees C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.
  •  
7.
  • Singh, Sandip K., et al. (författare)
  • Integrated Two-Stage Alkaline-Oxidative Pretreatment of Hybrid Poplar. Part 1 : Impact of Alkaline Pre-Extraction Conditions on Process Performance and Lignin Properties
  • 2019
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 0888-5885 .- 1520-5045. ; 58:35, s. 15989-15999
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously demonstrated that a two-stage pretreatment comprising of an alkaline pre-extraction followed by a Cu-catalyzed alkaline–oxidative treatment is effective at pretreating hardwoods under relatively mild reaction conditions. In this work, we focus on characterizing how biomass source and reaction conditions used during the alkaline pre-extraction impact the subsequent processing stages as well as lignin yields and properties. Specifically, three hybrid poplars were subjected to the first stage alkaline pre-extraction under various conditions including differences in time (15–300 min), temperature (95–155 °C), and alkali loadings (50–200 mg NaOH/g biomass), and the impact on total mass solubilization, lignin recovery, and lignin purity was determined. Empirical correlations were developed between reaction conditions and mass solubilization and lignin recovery during the pre-extraction stage. For select conditions, lignin properties were assessed and include β-O-4 content determined by 13C NMR, molecular mass distributions as determined by gel permeation chromatography, and susceptibility to depolymerization to aromatic monomers using thioacidolysis and formic acid catalyzed depolymerization. We found alkaline pre-extraction performed at higher temperatures generated lignins exhibiting lower contamination by polysaccharides, lower aromatic monomer yields from depolymerization, lower molar masses, and lower β-O-4 contents relative to the lower temperature pre-extractions. Finally, the pre-extracted biomass from select conditions was assessed for its response to the subsequent Cu-catalyzed alkaline–oxidative treatment and enzymatic hydrolysis. It was demonstrated that minor differences in delignification during pre-extraction have quantifiable impacts on the subsequent efficacy of the second stage of pretreatment and enzymatic hydrolysis with improved lignin removal during the first pre-extraction stage resulting in improved hydrolysis yields.
  •  
8.
  • Zaidi, A. A., et al. (författare)
  • A Preliminary Study on Waveform Candidates for 5G Mobile Radio Communications Above 6 GHz
  • 2016
  • Ingår i: IEEE Vehicular Technology Conference. - 1550-2252.
  • Konferensbidrag (refereegranskat)abstract
    • This paper provides an overview and preliminary comparison of several multi-carrier and single-carrier waveforms that are potential candidates for future 5G mobile radio communications above 6 GHz. The waveforms are assessed primarily based on the established and known results as well as recent findings keeping in view the design requirements that are relevant to using frequencies above 6 GHz, especially the millimeter wave frequencies. The Key Performance Indicators and degrees of freedom in the design of different waveforms and their potential applications for mm-wave communications are discussed. Certain features that are particularly interesting for mm-wave communication and require further investigations are also highlighted. Furthermore, a common framework for synthesizing different waveform candidates has been developed. Finally, a preliminary qualitative comparison of different multicarrier and single carrier waveforms has been derived.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy