SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lutz M) ;hsvcat:4"

Sökning: WFRF:(Lutz M) > Lantbruksvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Piponiot, Camille, et al. (författare)
  • Distribution of biomass dynamics in relation to tree size in forests across the world
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 234, s. 1664-1677
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
  •  
2.
  • Davies, Stuart J., et al. (författare)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
3.
  • De Frenne, Pieter, et al. (författare)
  • Plant movements and climate warming : intraspecific variation in growth responses to nonlocal soils
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 202:2, s. 431-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.
  •  
4.
  • Ludewig, K., et al. (författare)
  • Differential effect of drought regimes on the seedling performance of six floodplain grassland species
  • 2018
  • Ingår i: Plant Biology. - : Wiley-Blackwell. - 1435-8603 .- 1438-8677. ; 20:4, s. 691-697
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root-mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands. In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results. In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species-specific (V. maritima being the most sensitive species) and habitat-specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands. Because of species- and habitat-specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.
  •  
5.
  • Campos Pereira, H., et al. (författare)
  • Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon – Effect of cation composition and pH
  • 2018
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 207, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = −0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog KOC = −1.41 ± 0.40 per log unit molc g−1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3–C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5–C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9–C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.
  •  
6.
  • Leite, Melina de Souza, et al. (författare)
  • Major axes of variation in tree demography across global forests
  • 2024
  • Ingår i: Ecography. - 0906-7590. ; 2024:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems.
  •  
7.
  • Needham, Jessica F., et al. (författare)
  • Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28, s. 2895-2909
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Zuleta, Daniel, 1990 (4)
Davies, Stuart J. (4)
Duque, Álvaro (4)
Kenfack, David (4)
Makana, Jean Remy (4)
Chang-Yang, Chia Hao (4)
visa fler...
Chuyong, George (4)
Itoh, Akira (4)
Lutz, James A. (4)
McMahon, Sean M. (4)
Malhi, Yadvinder (3)
Uriarte, María (3)
Thompson, Jill (3)
Ewango, Corneille E. ... (3)
Bourg, Norman A. (3)
Cárdenas, Dairon (3)
Chen, Yu Yun (3)
Ediriweera, Sisira (3)
Hubbell, Stephen P. (3)
Johnson, Daniel J. (3)
Král, Kamil (3)
Anderson-Teixeira, K ... (3)
Sun, I. Fang (3)
Zimmerman, Jess K. (2)
Burslem, David F. R. ... (2)
Yuan, Zuoqiang (2)
McShea, William (2)
Aguilar, Salomón (2)
Allen, David (2)
Brockelman, Warren Y ... (2)
Bunyavejchewin, Sara ... (2)
Cao, Min (2)
Clay, Keith (2)
Cordell, Susan (2)
Dattaraja, Handanake ... (2)
den Ouden, Jan (2)
Fernando, Edwino S. (2)
Filip, Jonah (2)
Foster, Robin (2)
Gunatilleke, I. A.U. ... (2)
Gunatilleke, C. V.S. (2)
Hao, Zhanqing (2)
Janík, David (2)
Larson, Andrew J. (2)
McShea, William J. (2)
Mi, Xiangcheng (2)
Mohamad, Mohizah (2)
Muller-Landau, Helen ... (2)
Howe, Robert (2)
Perez, Rolando (2)
visa färre...
Lärosäte
Göteborgs universitet (4)
Karlstads universitet (2)
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy