SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lyssenko Valeriya) ;pers:(Jonsson Anna)"

Search: WFRF:(Lyssenko Valeriya) > Jonsson Anna

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlqvist, Emma, et al. (author)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Journal article (peer-reviewed)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
2.
  •  
3.
  •  
4.
  • Berglund, Lisa, et al. (author)
  • Glucose-Dependent Insulinotropic Polypeptide (GIP) Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB.
  • 2016
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:1, s. 239-254
  • Journal article (peer-reviewed)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the pro-atherogenic cytokine osteopontin (OPN) in mouse arteries, via local release of endothelin-1 (ET-1) and activation of cAMP response element binding protein (CREB). Infusion of GIP increases plasma OPN levels in healthy individuals. Plasma ET-1 and OPN levels are positively correlated in patients with critical limb ischemia. Fasting GIP levels are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared to controls. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients; and expression associates to parameters characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from human, mouse, rat and pig; remarkable up-regulation is observed in endothelial and smooth muscle cells upon culture conditions yielding a "vascular disease-like" phenotype. Moreover, a common variant rs10423928 in the GIPR gene associated with increased risk of stroke in type 2 diabetes patients.
  •  
5.
  • Gaulton, Kyle J, et al. (author)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Journal article (peer-reviewed)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
6.
  • Guey, Lin T., et al. (author)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • In: Genetic Epidemiology. - : Wiley. - 0741-0395. ; 35:4, s. 236-246
  • Journal article (peer-reviewed)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
7.
  • Hertel, Jens K., et al. (author)
  • FTO, Type 2 Diabetes, and Weight Gain Throughout Adult Life A Meta-Analysis of 41,504 Subjects From the Scandinavian HUNT, MDC, and MPP Studies
  • 2011
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:5, s. 1637-1644
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE-FTO is the most important polygene identified for obesity. We aimed to investigate whether a variant in FTO affects type 2 diabetes risk entirely through its effect on BMI and how FTO) influences BMI across adult life span. RESEARCH DESIGN AND METHODS-Through regression models, we assessed the relationship between the FTO single nucleotide polymorphisms rs9939609, type 2 diabetes, and BMI across life span in subjects from the Norwegian population-based HUNT study using cross-sectional and longitudinal perspectives. For replication and meta-analysis, we used data from the Malmo Diet and Cancer (MDC) and Malmo Preventive Project (MPP) cohorts, comprising a total sample of 41,504 Scandinavians. RESULTS-The meta-analysis revealed a highly significant association for rs9939609 with both type 2 diabetes (OR 1.13; P = 4.5 x 10(-8)) and the risk to develop incident type 2 diabetes (OR 1.16; P = 3.2 x 10(-8)). The associations remained also after correction for BMI and other anthropometric measures. Furthermore, we confirmed the strong effect on BMI (0.28 kg/m(2) per risk allele; P = 2.0 x 10(-26), with no heterogeneity between different age-groups. We found no differences in change of BMI over time according to rs9939609 risk alleles, neither overall (Delta BMI = 0.0 [-0.05, 0.05]) nor in any individual age stratum, indicating no further weight gain attributable to FTO genotype in adults. CONCLUSIONS-We have identified that a variant in FTO alters type 2 diabetes risk partly independent of its observed effect on BMI. The additional weight gain as a result of the FTO risk variant seems to occur before adulthood, and the BMI difference remains stable thereafter. Diabetes 60:1637-1644, 2011
  •  
8.
  • Jonsson, Anna, et al. (author)
  • A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion.
  • 2009
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 58:10, s. 2409-2413
  • Journal article (peer-reviewed)abstract
    • Objective- Two independent genome wide association studies for type 2 diabetes in Japanese have recently identified common variants in the KCNQ1 gene to be strongly associated with type 2 diabetes. Here we studied whether a common variant in KCNQ1 would influence BMI, insulin secretion and action and predict future type 2 diabetes in subjects from Sweden and Finland. Research design and methods- Risk of type 2 diabetes conferred by KCNQ1 rs2237895 was studied in 2,830 type 2 diabetes cases and 3,550 controls from Sweden (Malmö Case-Control) and prospectively in 16,061 individuals from the Malmö Preventive Project (MPP). Association between genotype and insulin secretion/action was assessed cross-sectionally in 3,298 non-diabetic subjects from the PPP-Botnia Study and longitudinally in 2,328 non-diabetic subjects from the Botnia Prospective Study (BPS). KCNQ1 expression (n=18) and glucose-stimulated insulin secretion (n=19) was measured in human islets from non-diabetic cadaver donors. Results. The C-allele of KCNQ1 rs2237895 was associated with increased risk of type 2 diabetes in both the case-control (OR 1.23 [1.12-1.34], p=5.6x10(-6)) and the prospective (OR 1.14 [1.06-1.22], p=4.8x10(-4)) studies. Furthermore, the C-allele was associated with decreased insulin secretion (CIR p=0.013; DI p=0.013) in the PPP-Botnia study and in the BPS at baseline (CIR p=3.6x10(-4); DI p=0.0058) and after follow-up (CIR p=0.0018; DI p=0.0030). C-allele carriers showed reduced glucose-stimulated insulin secretion in human islets (p=2.5x10(-6)). Conclusion. A common variant in the KCNQ1 gene is associated with increased risk of future type 2 diabetes in Scandinavians which partially can be explained by an effect on insulin secretion.
  •  
9.
  • Jonsson, Anna, et al. (author)
  • Effect of a common variant of the PCSK2 gene on reduced insulin secretion.
  • 2012
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X.
  • Journal article (peer-reviewed)abstract
    • AIM/HYPOTHESIS: Individuals at risk of developing type 2 diabetes show a progressive decline in insulin secretion and increased insulin resistance over time. However, inability of the beta cells to compensate for the increased insulin resistance represents a key defect leading to overt type 2 diabetes. The aims of the present study were to replicate the association between genetic variants of the PCSK2 gene and insulin secretion, and to explore the effect on risk of type 2 diabetes. METHODS: Replication of PCSK2 variants against insulin secretion included 7,682 non-diabetic Scandinavian individuals. Insulin secretion was measured as the corrected insulin response or disposition index, i.e. insulin secretion adjusted for the degree of insulin resistance. Risk of type 2 diabetes was studied in 28,287 Scandinavian individuals. RESULTS: The C-allele of PCSK2 rs2208203 was associated with reduced insulin secretion measured as the corrected insulin response (n = 8,151; β = -0.112, p = 1.3 × 10(-6)) as well as disposition index (n = 8,078, β = -0.128, p = 1.6 × 10(-7)). The variant was also associated with lower fasting glucagon levels (β = -0.084, p = 0.005) in non-diabetic individuals with a fasting plasma glucose of over 5.5 mmol/l. In human pancreatic islets, PCSK2 expression correlated negatively with HbA(1c) (n = 133, r = -0.196, p = 0.038), and showed a tendency to be lower in hyperglycaemic (HbA(1c) ≥6.0% or type 2 diabetes; n = 47, p = 0.13) than normoglycaemic (HbA(1c) >6.0%; n = 66) donors. The presence of the PCSK2 rs2208203 risk allele did not influence gene expression, nor did it show an apparent risk in terms of type 2 diabetes. CONCLUSIONS/INTERPRETATION: A variant of the PCSK2 gene was associated with reduced glucose-stimulated insulin secretion, but also with lower glucagon levels, which could potentially counteract the effects of decreased insulin secretion on the risk of type 2 diabetes.
  •  
10.
  • Jonsson, Anna, et al. (author)
  • Effect of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on α- and β-cell Function and Insulin Action in Man.
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:8, s. 2978-2983
  • Journal article (peer-reviewed)abstract
    • Although meta-analyses of genome-wide association studies have identified more than 60 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes and/or glycemic traits, there is little information whether these variants also affect α-cell function. The aim of the present study was to evaluate the effects of glycemia-associated genetic loci on islet function in vivo and in vitro. We studied 43 SNPs in 4,654 normoglycemic participants from the Finnish population-based PPP-Botnia study. Islet function was assessed, in vivo, by measuring insulin and glucagon concentrations during OGTT, and, in vitro, by measuring glucose stimulated insulin and glucagon secretion from human pancreatic islets. Carriers of risk variants in BCL11A, HHEX, ZBED3, HNF1A, IGF1 and NOTCH2 showed elevated, while those in CRY2, IGF2BP2, TSPAN8 and KCNJ11 decreased fasting and/or 2hr glucagon concentrations in vivo. Variants in BCL11A, TSPAN8, and NOTCH2 affected glucagon secretion both in vivo and in vitro. The MTNR1B variant was a clear outlier in the relationship analysis between insulin secretion and action, as well as between insulin, glucose and glucagon. Many of the genetic variants shown to be associated with type 2 diabetes or glycemic traits also exert pleiotropic in vivo and in vitro effects on islet function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view