SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Månsson A) ;pers:(Båth Magnus 1974)"

Sökning: WFRF:(Månsson A) > Båth Magnus 1974

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Asplund, Sara, 1976, et al. (författare)
  • Extended analysis of the effect of learning with feedback on the detectability of pulmonary nodules in chest tomosynthesis
  • 2011
  • Ingår i: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. - : SPIE. - 1605-7422. ; 7966
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In chest tomosynthesis, low-dose projections collected over a limited angular range are used for reconstruction of section images of the chest, resulting in a reduction of disturbing anatomy at a moderate increase in radiation dose compared to chest radiography. In a previous study, we investigated the effects of learning with feedback on the detection of pulmonary nodules in chest tomosynthesis. Six observers with varying degrees of experience of chest tomosynthesis analyzed tomosynthesis cases for presence of pulmonary nodules. The cases were analyzed before and after learning with feedback. Multidetector computed tomography (MDCT) was used as reference. The differences in performance between the two readings were calculated using the jackknife alternative free-response receiver operating characteristics (JAFROC-2) as primary measure of detectability. Significant differences between the readings were found only for observers inexperienced in chest tomosynthesis. The purpose of the present study was to extend the statistical analysis of the results of the previous study, including JAFROC-1 analysis and FROC curves in the analysis. The results are consistent with the results of the previous study and, furthermore, JAFROC-1 gave lower p-values than JAFROC-2 for the observers who improved their performance after learning with feedback. © 2011 SPIE.
  •  
3.
  •  
4.
  • Asplund, Sara, 1976, et al. (författare)
  • Learning aspects and potential pitfalls regarding detection of pulmonary nodules in chest tomosynthesis and proposed related quality criteria.
  • 2011
  • Ingår i: Acta radiologica. - : SAGE Publications. - 1600-0455 .- 0284-1851. ; 52:5, s. 503-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In chest tomosynthesis, low-dose projections collected over a limited angular range are used for reconstruction of an arbitrary number of section images of the chest, resulting in a moderately increased radiation dose compared to chest radiography. Purpose To investigate the effects of learning with feedback on the detection of pulmonary nodules for observers with varying experience of chest tomosynthesis, to identify pitfalls regarding detection of pulmonary nodules, and present suggestions for how to avoid them, and to adapt the European quality criteria for chest radiography and computed tomography (CT) to chest tomosynthesis. Material and Methods Six observers analyzed tomosynthesis cases for presence of nodules in a jackknife alternative free-response receiver-operating characteristics (JAFROC) study. CT was used as reference. The same tomosynthesis cases were analyzed before and after learning with feedback, which included a collective learning session. The difference in performance between the two readings was calculated using the JAFROC figure of merit as principal measure of detectability. Results Significant improvement in performance after learning with feedback was found only for observers inexperienced in tomosynthesis. At the collective learning session, localization of pleural and subpleural nodules or structures was identified as the main difficulty in analyzing tomosynthesis images. Conclusion The results indicate that inexperienced observers can reach a high level of performance regarding nodule detection in tomosynthesis after learning with feedback and that the main problem with chest tomosynthesis is related to the limited depth resolution.
  •  
5.
  •  
6.
  • Lanhede, B, et al. (författare)
  • The influence of different technique factors on image quality of chest radiographs as evaluated by modified CEC image quality criteria.
  • 2002
  • Ingår i: The British journal of radiology. - : British Institute of Radiology. - 0007-1285 .- 1748-880X. ; 75:889, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The Commission of the European Communities (CEC) research project "Predictivity and optimisation in medical radiation protection" addressed fundamental operational limitations in existing radiation protection mechanisms. The first part of the project aimed at investigating (1) whether the CEC image quality criteria could be used for optimization of a radiographic process and (2) whether significant differences in image quality based on these criteria could be detected in a controlled project with well known physical and technical parameters. In the present study, chest radiographs on film were produced using healthy volunteers. Four physical/technical parameters were varied in a carefully controlled manner: tube voltage (102 kVp and 141 kVp), nominal speed class (160 and 320), maximum film density (1.3 and 1.8) and method of scatter reduction (grid (R=12) and air gap). The air kerma at the entrance surface was measured for all patients and the risk-related dose H(Golem), based on calculated organ-equivalent dose conversion coefficients and the measured entrance air kerma values, was calculated. Image quality was evaluated by a group of European expert radiologists using a modified version of the CEC quality criteria. For the two density levels, density level 1.8 was significantly better than 1.3 but at the cost of a higher patient radiation exposure. The correlation between the number of fulfilled quality criteria and H(Golem) was generally poor. An air gap technique resulted in lower doses than scatter reduction with a grid but provided comparable image quality. The criteria can be used to highlight optimum radiographic technique in terms of image quality and patient dose, although not unambiguously. A recommendation for good radiographic technique based on a compromise between image quality and risk-related radiation dose to the patient is to use 141 kVp, an air gap, a screen-film system with speed 320 and an optical density of 1.8.
  •  
7.
  • Svalkvist, Angelica, et al. (författare)
  • Evaluation of an improved method of simulating lung nodules in chest tomosynthesis
  • 2012
  • Ingår i: Acta Radiologica. - : SAGE Publications. - 0284-1851 .- 1600-0455. ; 53:8, s. 874-884
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Simulated pathology is a valuable complement to clinical images in studies aiming at evaluating an imaging technique. In order for a study using simulated pathology to be valid, it is important that the simulated pathology in a realistic way reflect the characteristics of real pathology. Purpose: To perform a thorough evaluation of a nodule simulation method for chest tomosynthesis, comparing the detection rate and appearance of the artificial nodules with those of real nodules in an observer performance experiment. Material and Methods: A cohort consisting of 64 patients, 38 patients with a total of 129 identified pulmonary nodules and 26 patients without identified pulmonary nodules, was used in the study. Simulated nodules, matching the real clinically found pulmonary nodules by size, attenuation, and location, were created and randomly inserted into the tomosynthesis section images of the patients. Three thoracic radiologists and one radiology resident reviewed the images in an observer performance study divided into two parts. The first part included nodule detection and the second part included rating of the visual appearance of the nodules. The results were evaluated using a modified receiver-operating characteristic (ROC) analysis. Results: The sensitivities for real and simulated nodules were comparable, as the area under the modified ROC curve (AUC) was close to 0.5 for all observers (range, 0.43-0.55). Even though the ratings of visual appearance for real and simulated nodules overlapped considerably, the statistical analysis revealed that the observers to were able to separate simulated nodules from real nodules (AUC values range 0.70-0.74). Conclusion: The simulation method can be used to create artificial lung nodules that have similar detectability as real nodules in chest tomosynthesis, although experienced thoracic radiologists may be able to distinguish them from real nodules.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy