SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mårtensson Thomas) ;pers:(Pettersson Karin 1975)"

Sökning: WFRF:(Mårtensson Thomas) > Pettersson Karin 1975

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ljungdahl, Thomas, 1974, et al. (författare)
  • Geometrically homogeneous series of covalently linked zinc/free-base porphyrin dimers of varying length; design, synthesis and characterization
  • 2006
  • Ingår i: European Journal of Organic Chemistry. - : Wiley. - 1099-0690 .- 1434-193X. ; :14, s. 3087-3096
  • Tidskriftsartikel (refereegranskat)abstract
    • Singlet excitation energy transfer, SEET, can be mediated by a bridge, connecting an energy donor and acceptor, via a superexchange mechanism. The mediation efficiency depends on the energy difference between the first excited states of the donor and the bridge, DEDB, as well as the donor-acceptor distance, RDA. We have previously constructed a series of donor-bridge-acceptor, D-B-A, systems that allowed us to study how SEET depends on DEDB. To expand this study into a second dimension, the distance dependence, a new series of D-B-A systems were constructed. This series was based on the same zinc/free-base porphyrin couple as the donor-acceptor pair in the previous series. Their relative orientation was also retained. In contrast to our first series, the bridges in the latter were of varying length. The bridges were oligo(phenyleneethynylene)phenylene (OPE) structures and the length was systematically changed by increasing the no. of phenyleneethynylene units from 1 to 4. To obtain high quality samples, the D-B-A systems were assembled by a building block approach where the zinc and free-base porphyrins were introduced sep. using Heck alkynylations. The performance of the OPE structure as a mediator and scaffold is discussed in terms of singlet excited state energies and flexibility. For the first time, when combining the topical D-B-A systems with our previous subset, a homogeneous series of D-B-A systems has been synthesized that allows for studies of both the distance dependence and the energy difference dependence of SEET.
  •  
2.
  • Ljungdahl, Thomas, 1974, et al. (författare)
  • Solvent and base dependence of copper-free palladium-catalyzed cross-couplings between terminal alkynes and arylic iodides: Development of efficient conditions for the construction of gold(III)/free-base porphyrin dimers
  • 2006
  • Ingår i: Journal of Organic Chemistry. - : American Chemical Society (ACS). - 0022-3263 .- 1520-6904. ; 71:4, s. 1677-1687
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, our attempts to optimize the Heck alkynylation (copper-free Sonogashira) reaction are presented. An efficient copper-free coupling protocol was needed for the synthesis of gold/zinc porphyrin dimers because previous methods had failed. Previous studies have usually focused on ligands, whereas this work focuses on the choice of solvent and base. The catalytic system throughout the investigation was formed from the stable precursor [Pd-2(dba)(3)center dot CHCl3] together with the ligand triphenylarsine, an easy-to-handle, air-stable ligand. A model study was conducted to examine the dependence of the Heck alkynylation on the solvent and base. The most successful modification proved to be the addition of methanol, as a cosolvent, in combination with a nucleophilic tertiary base. The success of the methanol additive is hypothesized to be caused by the presence of a rate-determining deprotonation step featuring a charge-separated transition state. Finally, the very high yielding and successful synthesis of a series of porphyrin systems using these new conditions is presented. For the first time, gold porphyrin substrates could efficiently be coupled in Heck alkynylation reactions.
  •  
3.
  • Pettersson, Karin, 1975, et al. (författare)
  • Interplay between Barrier Width and Height in Electron Tunneling: Photoinduced Electron Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems
  • 2006
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 110:1, s. 319-326
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of electron tunneling in mol. donor-bridge-acceptor (D-B-A) systems is detd. both by the tunneling barrier width and height, i.e., both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and mol. scale electronics. The authors have studied a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. The authors have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DEDB in zinc/gold porphyrin D-B-A systems with bridges of const. edge to edge distance (19.6 .ANG.) and varying DEDB (3900-17,600 cm-1). Here, the authors use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 .ANG.. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DEDB dependence of electron transfer can be studied simultaneously in a systematic way. [on SciFinder (R)]
  •  
4.
  • Pettersson, Karin, 1975, et al. (författare)
  • Singlet Energy Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems: Interaction between Bridge Length and Bridge Energy
  • 2006
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 110:1, s. 310-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Singlet excitation energy transfer is governed by two donor-acceptor interactions, the Coulombic and exchange interactions giving rise to the Foerster and Dexter mechanisms, resp., for singlet energy transfer. In transfer between colliding mols. or between a donor (D) and acceptor (A) connected in donor-bridge-acceptor (D-B-A) system by an inert spacer (B), the distinction between these two mechanisms is quite clear. However, in D-B-A systems connected by a p-conjugated bridge, the exchange interaction between the donor and acceptor is mediated by the virtual low-lying excited states (unoccupied orbitals) of that bridge and, as a consequence, becomes much more long-range in character. Thus, the clear distinction to the Coulombic mechanism is lost. This so-called superexchange mechanism for singlet energy transfer has been shown to make a significant contribution to the energy transfer rates in several D-B-A systems, and its D-A distance as well as D-B energy gap dependencies have been studied. We here demonstrate that in a series of oligo-p-phenyleneethynylene (OPE) bridged porphyrin-based D-B-A systems with varying D-A distances the Foerster and through-bond (superexchange) mechanisms both make considerable contributions to the obsd. singlet energy transfer rates. The donor is either a zinc porphyrin or a zinc porphyrin with a pyridine ligand, and the acceptor is a free base porphyrin. By comparison to a homologous series where only the D-B energy gaps varies, a sepn. between the two energy transfer mechanisms was possible and, moreover, an interplay between distance and energy gap dependencies was noted. The distance dependence was shown to be approx. exponential with an attenuation factor b = 0.20 .ANG.-1. If the effect of the varying D-B energy gaps in the OPE series was taken into account, a slightly higher b-value was obtained. Ground-state absorption, steady-state, and time-resolved emission spectroscopy were used. The exptl. study is accompanied by time-dependent d. functional theory (TD-DFT) calcns. of the electronic coupling, and the exptl. and theor. results are in excellent qual. agreement (same distance dependence).
  •  
5.
  • Wiberg, Joanna, 1980, et al. (författare)
  • Charge recombination versus charge separation in donor-bridge-acceptor systems
  • 2007
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 129:1, s. 155-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimizing the ratio of the rates for charge separation (CS) over charge recombination (CR) is crucial to create long-lived charge-separated states. Mastering the factors that govern the electron transfer (ET) rates is essential when trying to achieve molecular-scale electronics, artificial photosynthesis, and also for the further development of solar cells. Much work has been put into the question of how the donor-acceptor distances and donor-bridge energy gaps affect the electronic coupling, V DA , and thus the rates of ET. We present here a unique comparison on how these factors differently influence the rates for CS and CR in a porphyrin-based donor-bridge-acceptor model system. Our system contains three series, each of which focuses on a separate charge-transfer rate-determining factor, the donor-acceptor distance, the donor-bridge energy gap, and last, the influence of the electron acceptor on the rate for charge transfer. In these three series both CS and CR are governed by superexchange interactions which make a CR/CS comparative study ideal. We show here that the exponential distance dependence increases slightly for CR compared to that for CS as a result of the increased tunneling barrier height for this reaction, in accordance with the McConnell superexchange model. We also show that the dependence on the tunneling barrier height is different for CS and CR. This difference is highly dependent on the electron acceptor and thus cannot solely be explained by the differences in the frontier orbitals of the electron donor in these porphyrin systems. © 2007 American Chemical Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy