SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Müller Esterl Werner) ;lar1:(uu)"

Sökning: WFRF:(Müller Esterl Werner) > Uppsala universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blaukat, Andree, et al. (författare)
  • Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 276:44, s. 40431-40440
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible phosphorylation plays important roles in G protein-coupled receptor signaling, desensitization, and endocytosis, yet the precise location and role of in vivo phosphorylation sites is unknown for most receptors. Using metabolic 32P labeling and phosphopeptide sequencing we provide a complete phosphorylation map of the human bradykinin B2 receptor in its native cellular environment. We identified three serine residues, Ser(339), Ser(346), and Ser(348), at the C-terminal tail as principal phosphorylation sites. Constitutive phosphorylation occurs at Ser(348), while ligand-induced phosphorylation is found at Ser(339) and Ser(346)/Ser(348) that could be executed by several G protein-coupled receptor kinases. In addition, we found a protein kinase C-dependent phosphorylation of Ser(346) that was mutually exclusive with the basal phosphorylation at Ser(348) and therefore may be implicated in differential regulation of B2 receptor activation. Functional analysis of receptor mutants revealed that a low phosphorylation stoichiometry is sufficient to initiate receptor sequestration while a clustered phosphorylation around Ser(346) is necessary for desensitization of the B2 receptor-induced phospholipase C activation. This was further supported by the specifically reduced Ser(346)/Ser(348) phosphorylation observed upon stimulation with a nondesensitizing B2 receptor agonist. The differential usage of clustered phosphoacceptor sites points to distinct roles of multiple kinases in controlling G protein-coupled receptor function.
  •  
2.
  • Blaukat, Andree, et al. (författare)
  • Downregulation of bradykinin B2 receptor in human fibroblasts during prolonged agonist exposure
  • 2003
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 284:6, s. H1909-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustained activation of G protein-coupled receptors results in an attenuation of cellular responses, a phenomenon termed desensitization. Whereas mechanisms for rapid desensitization of ligand-receptor-G protein-effector systems are relatively well characterized, much less is known about long-term adaptation processes that occur in the continuous presence of an agonist. Here we have studied the fate of endogenously expressed bradykinin B(2) receptors on human fibroblasts during prolonged agonist treatment. Stimulation with bradykinin for up to 24 h resulted in a 50% reduction of surface binding sites that was paralleled by a similar decrease of total B(2) receptor protein followed by Western blotting using monoclonal antibodies to the B(2) receptor. Whereas B(2) receptor mRNA levels did not change during 24 h of agonist treatment, B(2) receptor de novo synthesis was attenuated by 35-50%, indicating translational control of B(2) receptor levels. Furthermore, the half-life of B(2) receptor protein was shortened by 20-40% as shown by (35)S-labeled pulse-chase and immunoprecipitation experiments. This study demonstrates that bradykinin B(2) receptor expression during long-term agonist treatment is primarily regulated on the (post)translational level, i.e., by attenuation of de novo synthesis and by reduction of receptor stability.
  •  
3.
  • Piiper, Albrecht, et al. (författare)
  • Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells.
  • 2002
  • Ingår i: J Biol Chem. - 0021-9258. ; 277:46, s. 43623-30
  • Tidskriftsartikel (refereegranskat)abstract
    • In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.
  •  
4.
  • Pizard, Anne, et al. (författare)
  • Palmitoylation of the human bradykinin B2 receptor influences ligand efficacy.
  • 2001
  • Ingår i: Biochemistry. - 0006-2960. ; 40:51, s. 15743-51
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the palmitoylation of the human bradykinin B2 receptor, we have mutated individually or simultaneously into glycine two potential acylation sites (cysteines 324 and 329) located in the carboxyl terminus of the receptor and evaluated the effects of these mutations by transfection in COS-7, CHO-K1, and HEK 293T. The wild-type receptor and the single mutants, but not the double mutant, incorporated [3H]palmitate, indicating that the receptor carboxyl tail can be palmitoylated at both sites. The mutants did not differ from the wild-type receptor for the kinetics of [3H]bradykinin binding, the basal and bradykinin-stimulated coupling to phospholipases C and A2, and agonist-induced phosphorylation. The nonpalmitoylated receptor had a 30% reduced capacity to internalize [3H]bradykinin. This indicates that palmitoylation does not influence the basal activity of the receptor and its agonist-driven activation. However, the mutants triggered phospholipid metabolism and MAP kinase activation in response to B2 receptor antagonists. Pseudopeptide and nonpeptide compounds that behaved as antagonists on the wild-type receptor became agonists on the nonpalmitoylated receptor and produced phospholipases C and A2 responses of 25-50% as compared to that of bradykinin. These results suggest that palmitoylation is required for the stabilization of the receptor-ligand complex in an uncoupled conformation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy