SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Müller Esterl Werner) ;pers:(Björck Lars)"

Sökning: WFRF:(Müller Esterl Werner) > Björck Lars

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ben Nasr, Abdelhakim, et al. (författare)
  • Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin
  • 1997
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 326:3, s. 657-660
  • Tidskriftsartikel (refereegranskat)abstract
    • H-kininogen (high-molecular-mass kininogen, HK) is the precursor of the vasoactive peptide hormone bradykinin (BK). Previous work has demonstrated that HK binds to Streptococcus pyogenes through M-proteins, fibrous surface proteins and important virulence factors of these bacteria. Here we find that M-protein-expressing bacteria absorb HK from human plasma. The HK bound to the bacteria was found to be cleaved, and analysis of the degradation pattern suggested that the cleavage of HK at the bacterial surface is associated with the release of BK. Moreover, addition of activated plasma prekallikrein to bacteria preincubated with human plasma, resulted in BK release. This mechanism, by which a potent vasoactive and proinflammatory peptide is generated at the site of infection, should influence the host-parasite relationship during S. pyogenes infections.
  •  
2.
  • Ben Nasr, Abdelhakim, et al. (författare)
  • Assembly of human contact phase factors and release of bradykinin at the surface of curli-expressing Escherichia coli
  • 1996
  • Ingår i: Molecular Microbiology. - 1365-2958. ; 20:5, s. 35-927
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous work has demonstrated that most strains of the human pathogen Streptococcus pyogenes bind kininogens through M protein, a fibrous surface protein and virulence determinant. Here we find that strains of several other pathogenic bacterial species, both Gram-positive and Gram-negative, isolated from patients with sepsis, also bind kininogens, especially kininogen (HK). The most pronounced interaction was seen between HK and Escherichia coli. Among clinical isolates of E. coli, the majority of the enterohaemorrhagic, enterotoxigenic, and sepsis strains, but none of the enteroinvasive and enteropathogenic strains, bound HK. Binding of HK to E. coli correlated with the expression of curli, another fibrous bacterial surface protein, and the binding of HK to purified curli was specific, saturable, and of high affinity; Ka = 9 x 10(7) M-1. Other contact phase proteins such as factor XI, factor XII, and prekallikrein bound to curliated E. coli, but not to an isogenic curli-deficient mutant strain, suggesting that contact phase activation may occur at the surface of curliated bacteria. Kininogens are also precursor molecules of the vasoactive kinins. When incubated with human plasma, curli-expressing bacteria absorbed HK. Addition of purified plasma kallikrein to the HK-loaded bacteria resulted in a rapid and efficient release of bradykinin from surface-bound HK. The assembly of contact phase factors at the surface of pathogenic bacteria and the release of the potent proinflammatory and vasoactive peptide bradykinin, should have a major impact on the host-microbe relationship and may contribute to bacterial pathogenicity and virulence.
  •  
3.
  • Ben Nasr, Abdelhakim, et al. (författare)
  • Human kininogens interact with M protein, a bacterial surface protein and virulence determinant.
  • 1995
  • Ingår i: Biochemical Journal. - 0264-6021. ; 305:1, s. 80-173
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes, the most significant streptococcal species in clinical medicine, expresses surface proteins with affinity for several human plasma proteins. Here we report that kininogens, the precursors to the vasoactive kinins, bind to the surface of S. pyogenes. M protein, a surface molecule and a major virulence factor-in these bacteria, occurs in > 80 different serotypes. Among 49 strains of S. pyogenes, all of different M serotypes, 41 bound radiolabelled kininogens, whereas 6 M protein-negative mutant strains showed no affinity. M protein of most serotypes bind fibrinogen, and among the 55 strains tested, binding of kininogens was closely correlated to fibrinogen binding (r = 0.88, P < 0.0001). Western blotting, slot binding and enzyme immunoassay experiments demonstrated that M proteins isolated from S. pyogenes of three different M protein serotypes (M1, M6 and M46) bound kininogens. The affinity between kininogens and M1 protein was determined to be 5 x 10(7) M-1 and < or = 10(6) M-1 for high molecular weight (H-kininogen) and low molecular weight kininogen, respectively. The kininogen binding site was tentatively mapped to the N-terminal portion of M1 protein, and this site does not overlap the specific and separate binding sites for albumin, IgG and fibrinogen using monoclonal antibodies to, and synthetic peptides of, the kininogen sequence, the major M protein-binding site(s) was mapped to the C-terminal portion of the H-kininogen light chain. We anticipate that the kininogen-M protein interaction contributes to the host-parasite relationship in S. pyogenes infections.
  •  
4.
  • Herwald, Heiko, et al. (författare)
  • Activation of the contact-phase system on bacterial surfaces - A clue to serious comlications in infections deseases
  • 1998
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 4:3, s. 298-302
  • Tidskriftsartikel (refereegranskat)abstract
    • Fever, hypotension and bleeding disorders are common symptoms of sepsis and septic shock. The activation of the contact-phase system is thought to contribute to the development of these severe disease states by triggering proinflammatory and procoagulatory cascades; however, the underlying molecular mechanisms are obscure. Here we report that the components of the contact-phase system are assembled on the surface of Escherichia coil and Salmonella through their specific interactions with fibrous bacterial surface proteins, curli and fimbriae. As a consequence, the proinflammatory pathway is activated through the release of bradykinin, a potent inducer of fever, pain and hypotension. Absorption of contact-phase proteins and fibrinogen by bacterial surface proteins depletes relevant coagulation factors and causes a hypocoagulatory state. Thus, the complex interplay of microbe surface proteins and host contact-phase factors may contribute to the symptoms of sepsis and septic shock.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy