SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Müller Esterl Werner)
 

Search: WFRF:(Müller Esterl Werner) > Zuraw Bruce L > International union...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences.

Leeb-Lundberg, Fredrik (author)
Lund University,Lunds universitet,Drug Target Discovery,Forskargrupper vid Lunds universitet,Lund University Research Groups
Marceau, Francois (author)
Müller-Esterl, Werner (author)
show more...
Pettibone, Douglas J (author)
Zuraw, Bruce L (author)
show less...
 (creator_code:org_t)
2005-02-24
2005
English.
In: Pharmacological Reviews. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0031-6997 .- 1521-0081. ; 57:1, s. 27-77
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmakologi och toxikologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmacology and Toxicology (hsv//eng)

Publication and Content Type

for (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view