SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(MacArthur Daniel G) ;hsvcat:3"

Sökning: WFRF:(MacArthur Daniel G) > Medicin och hälsovetenskap

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brownstein, Catherine A., et al. (författare)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
2.
  • Lappalainen, Tuuli, et al. (författare)
  • Transcriptome and genome sequencing uncovers functional variation in humans
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 506-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project-the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.
  •  
3.
  • Singer-Berk, Moriel, et al. (författare)
  • Advanced variant classification framework reduces the false positive rate of predicted loss-of-function variants in population sequencing data
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 110:9, s. 1496-1508
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicted loss of function (pLoF) variants are often highly deleterious and play an important role in disease biology, but many pLoF variants may not result in loss of function (LoF). Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines’ PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 genes associated with autosomal-recessive disease from the Genome Aggregation Database (gnomAD v.2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in a low proportion expressed across transcripts (pext) scored region, or the presence of cryptic in-frame splice rescues. Variants predicted to evade LoF or to be potential artifacts were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of pLoF variants predicted as likely not LoF/not LoF, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.
  •  
4.
  • Strang-Karlsson, Sonja, et al. (författare)
  • A novel compound heterozygous mutation in the POMK gene causing limb-girdle muscular dystrophy-dystroglycanopathy in a sib pair
  • 2018
  • Ingår i: Neuromuscular Disorders. - : Elsevier BV. - 0960-8966 .- 1873-2364. ; 28:7, s. 614-618
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe two Finnish siblings in whom an incidentally detected elevated creatine kinase activity eventually led to a diagnosis of limb-girdle muscular dystrophy-dystroglycanopathy (Type C12; MDDGC12). When diagnosed at age 10 and 13 years, they were mildly affected with a slow or non-progressive disease course. The main symptoms comprised infrequent hip cramps triggered by flexion, neck cramps triggered by yawning, transient growing pains, calf hypertrophy and mild proximal muscle weakness. Their cognitive and motor developments were unremarkable and they were physically active. Whole-exome sequencing revealed compound heterozygous mutations, both of which were novel, in the protein O-mannosyl kinase (POMK) gene in both siblings; a missense mutation, p.Pro322Leu (c.965C > T), and a nonsense mutation, p.Arg46Ter (c.136C > T). The results were confirmed by Sanger sequencing, showing that the parents were heterozygous carriers of one mutation each. This report adds to the literature by providing phenotype and genotype data on this ultra-rare POMK-related dystroglycanopathy.
  •  
5.
  • Cummings, Beryl B., et al. (författare)
  • Transcript expression-aware annotation improves rare variant interpretation
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581, s. 452-458
  • Tidskriftsartikel (refereegranskat)abstract
    • The acceleration of DNA sequencing in samples from patients and population studies has resulted in extensive catalogues of human genetic variation, but the interpretation of rare genetic variants remains problematic. A notable example of this challenge is the existence of disruptive variants in dosage-sensitive disease genes, even in apparently healthy individuals. Here, by manual curation of putative loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation Database (gnomAD)1, we show that one explanation for this paradox involves alternative splicing of mRNA, which allows exons of a gene to be expressed at varying levels across different cell types. Currently, no existing annotation tool systematically incorporates information about exon expression into the interpretation of variants. We develop a transcript-level annotation metric known as the ‘proportion expressed across transcripts’, which quantifies isoform expression for variants. We calculate this metric using 11,706 tissue samples from the Genotype Tissue Expression (GTEx) project2 and show that it can differentiate between weakly and highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum disorder and intellectual disability or developmental disorders to show that pLoF variants in weakly expressed regions have similar effect sizes to those of synonymous variants, whereas pLoF variants in highly expressed exons are most strongly enriched among cases. Our annotation is fast, flexible and generalizable, making it possible for any variant file to be annotated with any isoform expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the analysis of rare variant burden in complex disorders, and the curation and prioritization of variants in recall-by-genotype studies.
  •  
6.
  • Karczewski, Konrad J., et al. (författare)
  • The mutational constraint spectrum quantified from variation in 141,456 humans
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581, s. 434-443
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
  •  
7.
  • Kaye, Jane, et al. (författare)
  • From patients to partners : participant-centric initiatives in biomedical research.
  • 2012
  • Ingår i: Nature reviews genetics. - : Springer Science and Business Media LLC. - 1471-0056 .- 1471-0064. ; 13:5, s. 371-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in computing technology and bioinformatics mean that medical research is increasingly characterized by large international consortia of researchers that are reliant on large data sets and biobanks. These trends raise a number of challenges for obtaining consent, protecting participant privacy concerns and maintaining public trust. Participant-centred initiatives (PCIs) use social media technologies to address these immediate concerns, but they also provide the basis for long-term interactive partnerships. Here, we give an overview of this rapidly moving field by providing an analysis of the different PCI approaches, as well as the benefits and challenges of implementing PCIs.
  •  
8.
  • Lim, Elaine T, et al. (författare)
  • Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10-8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10-117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10-4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
  •  
9.
  • Vallabh Minikel, Eric, et al. (författare)
  • Evaluating drug targets through human loss-of-function genetic variation
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous ‘knockout’ humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.
  •  
10.
  • Wang, Qingbo, et al. (författare)
  • Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the same haplotype in an individual, are a clinically and biologically important class of genetic variation. However, existing tools typically do not accurately classify MNVs, and understanding of their mutational origins remains limited. Here, we systematically survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome Aggregation Database (gnomAD). We identify 1,792,248 MNVs across the genome with constituent variants falling within 2 bp distance of one another, including 18,756 variants with a novel combined effect on protein sequence. Finally, we estimate the relative impact of known mutational mechanisms - CpG deamination, replication error by polymerase zeta, and polymerase slippage at repeat junctions - on the generation of MNVs. Our results demonstrate the value of haplotype-aware variant annotation, and refine our understanding of genome-wide mutational mechanisms of MNVs
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy