SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(MacGregor S.) ;pers:(MacGregor Stuart)"

Sökning: WFRF:(MacGregor S.) > MacGregor Stuart

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
2.
  • Thorleifsson, Gudmar, et al. (författare)
  • Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:10, s. 906-909
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[ A], odds ratio (OR) = 1.36, P = 5.0 x 10(-10)). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.
  •  
3.
  • Chen, Hongjie, et al. (författare)
  • Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals
  • 2021
  • Ingår i: Human Genetics and Genomics Advances. - : Cell Press. - 2666-2477. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis.
  •  
4.
  • Feng, Helian, et al. (författare)
  • Cross-cancer cross-tissue Transcriptome-wide Association Study (TWAS) of 11 cancers identifies 56 novel genes
  • 2020
  • Ingår i: Genetic Epidemiology. - : John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 44:5, s. 481-481
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Though heterogeneous, multiple tumor types share hallmark mechanisms. Thus, identifying genes associated with multiple cancer types may shed light on general oncogenic mechanisms and identify genes missed in single‐cancer analyses. TWAS have been successful in testing whether genetically‐predicted tissue‐specific gene expression is associated with cancer risk. Although cross‐cancer genome‐wide association studies (GWAS) analyses have been performed previously, no cross‐cancer TWAS has been conducted to date. Here, we implement a pipeline to perform cross‐cancer, cross‐tissue TWAS analysis. We use newly‐developed multi‐trait TWAS test statistics to integrate the TWAS results for association between 11 separated cancers and predicted gene expression in 43 GTEx tissues, including a “sum” test and a “variance components” test, analogous to fixed‐ and random‐effects meta‐analyses. We then integrated the results across different tissues using the Aggregated Cauchy Association Test (ACAT) combined test.A total of 403 genes were significantly associated with at least one cancer type for at least one tissue; 96 additional genes were identified when combining test results across cancers; and 35 additional genes when further combining test results across tissue. Among these significant genes, 70 were not near previously‐published GWAS index variants. 14 of the 70 novel genes were identified from the single‐cancer single‐tissue test; an additional 43 were identified with the cross‐cancer test; and another 13 were identified when further combined across tissues. The newly identified genes, including RBBP8 and TP53BP , are involved in chromatin structure, tumorigenesis, apoptosis, transcriptional regulation, DNA repair, immune system, oxidative damage and cell‐cycle, proliferation, progression, shape, structure, and migration.
  •  
5.
  • Lindström, Sara, et al. (författare)
  • Genome-wide analyses characterize shared heritability among cancers and identify novel cancer susceptibility regions
  • 2023
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 115:6, s. 712-732
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci.METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci.RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci.CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.
  •  
6.
  • Mateos, Marion K., et al. (författare)
  • Genome-wide association meta-analysis of single-nucleotide polymorphisms and symptomatic venous thromboembolism during therapy for acute lymphoblastic leukemia and lymphoma in caucasian children
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Symptomatic venous thromboembolism (VTE) occurs in five percent of children treated for acute lymphoblastic leukemia (ALL), but whether a genetic predisposition exists across different ALL treatment regimens has not been well studied. Methods: We undertook a genome-wide association study (GWAS) meta-analysis for VTE in consecutively treated children in the Nordic/Baltic acute lymphoblastic leukemia 2008 (ALL2008) cohort and the Australian Evaluation of Risk of ALL Treatment-Related Side-Effects (ERASE) cohort. A total of 92 cases and 1481 controls of European ancestry were included. Results: No SNPs reached genome-wide significance (p < 5 × 10−8) in either cohort. Among the top 34 single-nucleotide polymorphisms (SNPs) (p < 1 × 10−6), two loci had concordant effects in both cohorts: ALOX15B (rs1804772) (MAF: 1%; p = 3.95 × 10−7) that influences arachidonic acid metabolism and thus platelet aggregation, and KALRN (rs570684) (MAF: 1%; p = 4.34 × 10−7) that has been previously associated with risk of ischemic stroke, atherosclerosis, and early-onset coronary artery disease. Conclusion: This represents the largest GWAS meta-analysis conducted to date associating SNPs to VTE in children and adolescents treated on childhood ALL protocols. Validation of these findings is needed and may then lead to patient stratification for VTE preventive interventions. As VTE hemostasis involves multiple pathways, a more powerful GWAS is needed to detect combination of variants associated with VTE.
  •  
7.
  • Spracklen, Cassandra N., et al. (författare)
  • Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology
  • 2019
  • Ingår i: American Journal of Human Genetics. - : CELL PRESS. - 0002-9297 .- 1537-6605. ; 105:1, s. 15-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 x 10(-7)). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r(2) > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 x 10(-4)) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.
  •  
8.
  • Lo Faro, Valeria, Postdoc, et al. (författare)
  • Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation
  • 2024
  • Ingår i: Cell Reports Medicine. - : Elsevier. - 2666-3791. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary open -angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta -analysis across 15 biobanks (of the Global Biobank Meta -analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multiancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene -enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
  •  
9.
  • Namba, Shinichi, et al. (författare)
  • Common germline risk variants impact somatic alterations and clinical features across cancers
  • 2023
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 83:1, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of genome-wide common risk variants, such as polygenic risk score (PRS), can measure genetic susceptibility to cancer. A better understanding of how common germline variants associate with somatic alterations and clinical features could facilitate personalized cancer prevention and early detection. We constructed PRSs from 14 genome-wide association studies (median n = 64,905) for 12 cancer types by multiple methods and calibrated them using the UK Biobank resources (n = 335,048). Meta-analyses across cancer types in The Cancer Genome Atlas (n = 7,965) revealed that higher PRS values were associated with earlier cancer onset and lower burden of somatic alterations, including total mutations, chromosome/arm somatic copy-number alterations (SCNA), and focal SCNAs. This contrasts with rare germline pathogenic variants (e.g., BRCA1/2 variants), showing heterogeneous associations with somatic alterations. Our results suggest that common germline cancer risk variants allow early tumor development before the accumulation of many somatic alterations characteristic of later stages of carcinogenesis.SIGNIFICANCE: Meta-analyses across cancers show that common germline risk variants affect not only cancer predisposition but the age of cancer onset and burden of somatic alterations, including total mutations and copy-number alterations.
  •  
10.
  • Su, Zhan, et al. (författare)
  • Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy