SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mank Judith E) ;pers:(Buechel Severine D.)"

Sökning: WFRF:(Mank Judith E) > Buechel Severine D.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wright, Alison E., et al. (författare)
  • Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution.
  •  
2.
  • Wright, Alison E., et al. (författare)
  • Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture
  • 2018
  • Ingår i: Evolution Letters. - : Oxford University Press (OUP). - 2056-3744. ; 2:2, s. 52-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genes are subject to contradictory selection pressures in males and females, and balancing selection resulting from sexual conflict has the potential to substantially increase standing genetic diversity in populations and thereby act as an important force in adaptation. However, the underlying causes of sexual conflict, and the potential for resolution, remains hotly debated. Using transcriptome-resequencing data from male and female guppies, we use a novel approach, combining patterns of genetic diversity and intersexual divergence in allele frequency, to distinguish the different scenarios that give rise to sexual conflict, and how this conflict may be resolved through regulatory evolution. We show that reproductive fitness is the main source of sexual conflict, and this is resolved via the evolution of male-biased expression. Furthermore, resolution of sexual conflict produces significant differences in genetic architecture between males and females, which in turn lead to specific alleles influencing sex-specific viability. Together, our findings suggest an important role for sexual conflict in shaping broad patterns of genome diversity, and show that regulatory evolution is a rapid and efficient route to the resolution of conflict.
  •  
3.
  • Bloch, Natasha I., et al. (författare)
  • Different mating contexts lead to extensive rewiring of female brain coexpression networks in the guppy
  • 2021
  • Ingår i: Genes, Brain and Behavior. - : Wiley. - 1601-1848 .- 1601-183X. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the basis of behavior requires dissecting the complex waves of gene expression that underlie how the brain processes stimuli and produces an appropriate response. In order to determine the dynamic nature of the neurogenomic network underlying mate choice, we use transcriptome sequencing to capture the female neurogenomic response in two brain regions involved in sensory processing and decision-making under different mating and social contexts. We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are rewired when a female evaluates attractive and nonattractive males, greatly extending current single-gene approaches to assess changes in the broader gene regulatory network. We find the brain experiences a remarkable amount of network rewiring in the different mating and social contexts we tested. Further analysis indicates the network differences across contexts are associated with behaviorally relevant functions and pathways, particularly learning, memory and other cognitive functions. Finally, we identify the loci that display social context-dependent connections, revealing the basis of how relevant neurological and metabolic pathways are differentially recruited in distinct social contexts. More broadly, our findings contribute to our understanding of the genetics of mating and social behavior by identifying gene drivers behind behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.
  •  
4.
  • Bloch, Natasha, I, et al. (författare)
  • Early neurogenomic response associated with variation in guppy female mate preference
  • 2018
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:11, s. 1772-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the evolution of mate choice requires dissecting the mechanisms of female preference, particularly how these differ among social contexts and preference phenotypes. Here, we studied the female neurogenomic response after only 10 min of mate exposure in both a sensory component (optic tectum) and a decision-making component (telencephalon) of the brain. By comparing the transcriptional response between females with and without preferences for colourful males, we identified unique neurogenomic elements associated with the female preference phenotype that are not present in females without preference. A network analysis revealed different properties for this response at the sensory-processing and the decision-making levels, and we show that this response is highly centralized in the telencephalon. Furthermore, we identified an additional set of genes that vary in expression across social contexts, beyond mate evaluation. We show that transcription factors among these loci are predicted to regulate the transcriptional response of the genes we found to be associated with female preference.
  •  
5.
  • Corral-López, Alberto, et al. (författare)
  • Female brain size affects the assessment of male attractiveness during mate choice
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
  •  
6.
  • Corral-López, Alberto, 1984-, et al. (författare)
  • Functional convergence of genomic and transcriptomic architecture underlies schooling behaviour in a live-bearing fish
  • 2024
  • Ingår i: Nature Ecology and Evolution. - : Springer Nature. - 2397-334X. ; 8:1, s. 98-110
  • Tidskriftsartikel (refereegranskat)abstract
    • The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission–fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy