SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mannervik Bengt) ;pers:(Jakobsson Emma)"

Sökning: WFRF:(Mannervik Bengt) > Jakobsson Emma

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grahn, Elin, et al. (författare)
  • New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix.
  • 2006
  • Ingår i: Acta Crystallogr D Biol Crystallogr. - 0907-4449. ; 62:Pt 2, s. 197-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Human glutathione transferase A1-1 is a well studied enzyme, but despite a wealth of structural and biochemical data a number of aspects of its catalytic function are still poorly understood. Here, five new crystal structures of this enzyme are described that provide several insights. Firstly, the structure of a complex of the wild-type human enzyme with glutathione was determined for the first time at 2.0 angstroms resolution. This reveals that glutathione binds in the G site in a very similar fashion as the glutathione portion of substrate analogues in other structures and also that glutathione binding alone is sufficient to stabilize the C-terminal helix of the protein. Secondly, we have studied the complex with a decarboxylated glutathione conjugate that is known to dramatically decrease the activity of the enzyme. The T68E mutant of human glutathione transferase A1-1 recovers some of the activity that is lost with the decarboxylated glutathione, but our structures of this mutant show that none of the earlier explanations of this phenomenon are likely to be correct. Thirdly, and serendipitously, the apo structures also reveal the conformation of the crucial C-terminal region that is disordered in all previous apo structures. The C-terminal region can adopt an ordered helix-like structure even in the apo state, but shows a strong tendency to unwind. Different conformations of the C-terminal regions were observed in the apo states of the two monomers, which suggests that cooperativity could play a role in the activity of the enzyme.
  •  
2.
  • Hederos, Sofia, et al. (författare)
  • A new enzyme by rational design - the incorporation of a single His residue enables efficient thioester hydrolysis by human glutathione transferase A1-1
  • 2004
  • Ingår i: Proc. Nat. Acad. Sci.. ; 101, s. 13163-13167
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for rational enzyme design is reported and illustrated by the engineering of a protein catalyst for thiol-ester hydrolysis. Five mutants of human glutathione (GSH; gamma-Glu-Cys-Gly) transferase A1-1 were designed in the search for a catalyst and to provide a set of proteins from which the reaction mechanism could be elucidated. The single mutant A216H catalyzed the hydrolysis of the S-benzoyl ester of GSH under turnover conditions with a k(cat)/K(M) of 156 M(-1) x min(-1), and a catalytic proficiency of >10(7) M(-1) when compared with the first-order rate constant of the uncatalyzed reaction. The wild-type enzyme did not hydrolyze the substrate, and thus, the introduction of a single histidine residue transformed the wild-type enzyme into a turnover system for thiol-ester hydrolysis. By kinetic analysis of single, double, and triple mutants, as well as from studies of reaction products, it was established that the enzyme A216H catalyzes the hydrolysis of the thiol-ester substrate by a mechanism that includes an acyl intermediate at the side chain of Y9. Kinetic measurements and the crystal structure of the A216H GSH complex provided compelling evidence that H216 acts as a general-base catalyst. The introduction of a single His residue into human GSH transferase A1-1 created an unprecedented enzymatic function, suggesting a strategy that may be of broad applicability in the design of new enzymes. The protein catalyst has the hallmarks of a native enzyme and is expected to catalyze various hydrolytic, as well as transesterification, reactions.
  •  
3.
  • Hederos, Sofia, et al. (författare)
  • Incorporation of a single His residue by rational design enables thiol-ester hydrolysis by human glutathione transferase A1-1.
  • 2004
  • Ingår i: Proc Natl Acad Sci U S A. - 0027-8424. ; 101:36, s. 13163-7
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for rational enzyme design is reported and illustrated by the engineering of a protein catalyst for thiol-ester hydrolysis. Five mutants of human glutathione (GSH; gamma-Glu-Cys-Gly) transferase A1-1 were designed in the search for a catalyst and to provide a set of proteins from which the reaction mechanism could be elucidated. The single mutant A216H catalyzed the hydrolysis of the S-benzoyl ester of GSH under turnover conditions with a k(cat)/K(M) of 156 M(-1) x min(-1), and a catalytic proficiency of >10(7) M(-1) when compared with the first-order rate constant of the uncatalyzed reaction. The wild-type enzyme did not hydrolyze the substrate, and thus, the introduction of a single histidine residue transformed the wild-type enzyme into a turnover system for thiol-ester hydrolysis. By kinetic analysis of single, double, and triple mutants, as well as from studies of reaction products, it was established that the enzyme A216H catalyzes the hydrolysis of the thiol-ester substrate by a mechanism that includes an acyl intermediate at the side chain of Y9. Kinetic measurements and the crystal structure of the A216H GSH complex provided compelling evidence that H216 acts as a general-base catalyst. The introduction of a single His residue into human GSH transferase A1-1 created an unprecedented enzymatic function, suggesting a strategy that may be of broad applicability in the design of new enzymes. The protein catalyst has the hallmarks of a native enzyme and is expected to catalyze various hydrolytic, as well as transesterification, reactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy