SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mannervik Bengt) ;pers:(Munoz Patricia)"

Sökning: WFRF:(Mannervik Bengt) > Munoz Patricia

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cuevas, Carlos, et al. (författare)
  • Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity
  • 2015
  • Ingår i: Neurotoxicity research. - : Springer Science and Business Media LLC. - 1029-8428 .- 1476-3524. ; 27:3, s. 217-228
  • Tidskriftsartikel (refereegranskat)abstract
    • U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 A mu M aminochrome increases GSTM2 expression by 2.1-fold (P < 0.001) at 3 h. The uptake of H-3-aminochrome into U373MG cells was significantly reduced in the presence of 2 A mu M nomifensine (P < 0.001) 100 A mu M imipramine (P < 0.001) and 50 mM dopamine (P < 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P < 0.001) when the cells were pretreated with 50 A mu M aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 A mu M aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of C-14-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.
  •  
2.
  • Huenchuguala, Sandro, et al. (författare)
  • Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction
  • 2014
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 10:4, s. 618-630
  • Tidskriftsartikel (refereegranskat)abstract
    • U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit H-3-dopamine uptake, which is inhibited by 2 mu M of nomifensine and 15 mu M of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 mu M purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 mu M aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A(1), and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A(1) pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/-tubulin (tubulin, ) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.
  •  
3.
  • Segura-Aguilar, Juan, et al. (författare)
  • Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity
  • 2022
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374 .- 1876-7958. ; 17:9, s. 1861-1866
  • Forskningsöversikt (refereegranskat)abstract
    • Astrocytes protect neurons by modulating neuronal function and survival. Astrocytes support neurons in several ways. They provide energy through the astrocyte-neuron lactate shuttle, protect neurons from excitotoxicity, and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support, as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine. A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine, such as aminochrome and other o-quinones, were generated under neuromelanin synthesis by oxidizing dopamine catechol structure. Astrocytes secrete glutathione transferase M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity. The role of this new astrocyte protective mechanism in Parkinson´s disease is discussed.
  •  
4.
  • Segura-Aguilar, Juan, et al. (författare)
  • Neuroprotection against Aminochrome Neurotoxicity : Glutathione Transferase M2-2 and DT-Diaphorase
  • 2022
  • Ingår i: Antioxidants. - : MDPI AG. - 2076-3921. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutathione is an important antioxidant that plays a crucial role in the cellular protection against oxidative stress and detoxification of electrophilic mutagens, and carcinogens. Glutathione transferases are enzymes catalyzing glutathione-dependent reactions that lead to inactivation and conjugation of toxic compounds, processes followed by subsequent excretion of the detoxified products. Degeneration and loss of neuromelanin-containing dopaminergic neurons in the nigrostriatal neurons generally involves oxidative stress, neuroinflammation, alpha-synuclein aggregation to neurotoxic oligomers, mitochondrial dysfunction, protein degradation dysfunction, and endoplasmic reticulum stress. However, it is still unclear what triggers these neurodegenerative processes. It has been reported that aminochrome may elicit all of these mechanisms and, interestingly, aminochrome is formed inside neuromelanin-containing dopaminergic neurons during neuromelanin synthesis. Aminochrome is a neurotoxic ortho-quinone formed in neuromelanin synthesis. However, it seems paradoxical that the neurotoxin aminochrome is generated during neuromelanin synthesis, even though healthy seniors have these neurons intact when they die. The explanation of this paradox is the existence of protective tools against aminochrome neurotoxicity composed of the enzymes DT-diaphorase, expressed in these neurons, and glutathione transferase M2-2, expressed in astrocytes. Recently, it has been reported that dopaminergic neurons can be protected by glutathione transferase M2-2 from astrocytes, which secrete exosomes containing the protective enzyme.
  •  
5.
  • Valdes, Raúl, et al. (författare)
  • Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes
  • 2021
  • Ingår i: Neurotoxicity research. - : Springer Science and Business Media LLC. - 1029-8428 .- 1476-3524. ; 39:2, s. 182-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzyme glutathione transferase M2-2, expressed in human astrocytes, increases its expression in the presence of aminochrome and catalyzes the conjugation of aminochrome, preventing its toxic effects. Secretion of the enzyme glutathione transferase M2-2 from U373MG cells, used as a cellular model for astrocytes, has been reported, and the enzyme is taken up by neuroblastoma SYSH-S7 cells and provide protection against aminochrome. The present study provides evidence that glutathione transferase M2-2 is released in exosomes from U373MG cells, thereby providing a means for intercellular transport of the enzyme. With particular relevance to Parkinson disease and other degenerative conditions, we propose a new mechanism by which astrocytes may protect dopaminergic neurons against the endogenous neurotoxin aminochrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy