SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mardis Elaine R) ;lar1:(kth)"

Sökning: WFRF:(Mardis Elaine R) > Kungliga Tekniska Högskolan

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
2.
  • Salmén, Fredrik, 1984- (författare)
  • Spatially resolved and single cell transcriptomics
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, massive parallel sequencing has revolutionized the field of biology and has provided us with a vast number of new discoveries in fields such as neurology, developmental biology and cancer research. A significant area is deciphering gene expression patterns, as well as other aspects of transcriptome information, such as the impact of splice variants and mutations on biological functions and disease development. By applying RNA-sequencing, one can extract this type of information in a large-scale manner. The most recent approaches include high-resolution techniques such as single cell sequencing and in situ methods in order to circumvent the problems with gene expression averaging in homogenized samples, and loss of spatial information.The research in this thesis is focused on the development of a novel genome-wide spatial transcriptomics method. The technique is used for analysis of intact tissue sections as well as single cells from solution, with the aim to combine gene expression and morphological information. In Paper I, the method is described in detail, and it is shown that the method is able to generate spatial high quality data from mouse olfactory bulb tissue sections (a part of the forebrain) as well as from tissue sections from breast cancer samples. In Paper III, we adapt the library preparation method in order to be able to execute it on a robotic workstation, thus increasing the reproducibility and the throughput, and decreasing the hands-on time. In Paper IV, we generate 3D-data from breast cancer samples by serial sectioning. We show that the gene expression can be highly variable along all three axes of a tumor, and we track pathways with specific spatial activity, as well as perform subtype classification with three-dimensional resolution. In Paper II, we present a high-throughput method for single cell transcriptomics of cells in solution. The method is based on the same type of solid surface capture as the tissue protocol described in Papers I, III and IV. Again, we show that we can generate high-quality gene expression data, and connect this to morphological characteristics of the analyzed single cells; both using cultured cells and samples from patients with leukemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy