SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marschall Hanns Ulrich) ;pers:(Borén Jan 1963)"

Sökning: WFRF:(Marschall Hanns Ulrich) > Borén Jan 1963

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nuñez Durán, Esther, et al. (författare)
  • Serine/threonine protein kinase 25 antisense oligonucleotide treatment reverses glucose intolerance, insulin resistance, and nonalcoholic fatty liver disease in mice.
  • 2018
  • Ingår i: Hepatology communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 2:1, s. 69-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) contributes to the pathogenesis of type 2 diabetes and cardiovascular disease, and patients with nonalcoholic steatohepatitis (NASH) are also at risk of developing cirrhosis, liver failure, and hepatocellular carcinoma. To date, no specific therapy exists for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the twenty-first century. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of energy homeostasis and NAFLD progression. Here, we investigated the effect of antisense oligonucleotides (ASOs) targeting Stk25 on the metabolic and molecular phenotype of mice after chronic exposure to dietary lipids. We found that Stk25 ASOs efficiently reversed high-fat diet-induced systemic hyperglycemia and hyperinsulinemia, improved whole-body glucose tolerance and insulin sensitivity, and ameliorated liver steatosis, inflammatory infiltration, apoptosis, hepatic stellate cell activation, and nutritional fibrosis in obese mice. Moreover, Stk25 ASOs suppressed the abundance of liver acetyl-coenzyme A carboxylase (ACC) protein, a key regulator of both lipid oxidation and synthesis, revealing the likely mechanism underlying repression of hepatic fat accumulation by ASO treatment. We also found that STK25 protein levels correlate significantly and positively with NASH development in human liver biopsies, and several common nonlinked single-nucleotide polymorphisms in the human STK25 gene are associated with altered liver fat, supporting a critical role of STK25 in the pathogenesis of NAFLD in humans. Conclusion: Preclinical validation for the metabolic benefit of pharmacologically inhibiting STK25 in the context of obesity is provided. Therapeutic intervention aimed at reducing STK25 function may provide a new strategy for the treatment of patients with NAFLD, type 2 diabetes, and related complex metabolic diseases. (Hepatology Communications 2018;2:69-83).
  •  
2.
  • Amrutkar, Manoj, et al. (författare)
  • STK25 is a critical determinant in nonalcoholic steatohepatitis.
  • 2016
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 30:10, s. 3628-3643
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25(-/-) mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
  •  
3.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease.
  • 2020
  • Ingår i: JCI insight. - : American Society for Clinical Investigation. - 2379-3708. ; 5:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
  •  
4.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans.
  • 2019
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 33:9, s. 9974-9989
  • Tidskriftsartikel (refereegranskat)abstract
    • Ectopic lipid storage in the liver is considered the main risk factor for nonalcoholic steatohepatitis (NASH). Understanding the molecular networks controlling hepatocellular lipid deposition is therefore essential for developing new strategies to effectively prevent and treat this complex disease. Here, we describe a new regulator of lipid partitioning in human hepatocytes: mammalian sterile 20-like (MST) 3. We found that MST3 protein coats lipid droplets in mouse and human liver cells. Knockdown of MST3 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion while inhibiting fatty acid influx and lipid synthesis. We also observed that lipogenic gene expression and acetyl-coenzyme A carboxylase protein abundance were reduced in MST3-deficient hepatocytes, providing insight into the molecular mechanisms underlying the decreased lipid storage. Furthermore, MST3 expression was positively correlated with key features of NASH (i.e., hepatic lipid content, lobular inflammation, and hepatocellular ballooning) in human liver biopsies. In summary, our results reveal a role of MST3 in controlling the dynamic metabolic balance of liver lipid catabolism vs. lipid anabolism. Our findings highlight MST3 as a potential drug target for the prevention and treatment of NASH and related complex metabolic diseases.
  •  
5.
  • Cansby, Emmelie, 1984, et al. (författare)
  • STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia
  • 2018
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 38:8, s. 1723-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25(-/-) mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
  •  
6.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver Disease
  • 2019
  • Ingår i: CMGH Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 7:3, s. 597-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide. Currently, no specific pharmacologic therapy is available for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of hepatic lipid partitioning and NAFLD/NASH. Here, we studied the metabolic benefit of liver-specific STK25 inhibitors on NAFLD development and progression in a mouse model of diet-induced obesity. Methods: We developed a hepatocyte-specific triantennary N-acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide (ASO) targeting Stk25 and evaluated its effect on NAFLD features in mice after chronic exposure to dietary lipids. Results: We found that systemic administration of hepatocyte-targeting GalNAc-Stk25 ASO in obese mice effectively ameliorated steatosis, inflammatory infiltration, hepatic stellate cell activation, nutritional fibrosis, and hepatocellular damage in the liver compared with mice treated with GalNAc-conjugated nontargeting ASO, without any systemic toxicity or local tolerability concerns. We also observed protection against high-fat-diet–induced hepatic oxidative stress and improved mitochondrial function with Stk25 ASO treatment in mice. Moreover, GalNAc-Stk25 ASO suppressed lipogenic gene expression and acetyl-CoA carboxylase protein abundance in the liver, providing insight into the molecular mechanisms underlying repression of hepatic steatosis. Conclusions: This study provides in vivo nonclinical proof-of-principle for the metabolic benefit of liver-specific inhibition of STK25 in the context of obesity and warrants future investigations to address the therapeutic potential of GalNAc-Stk25 ASO in the prevention and treatment of NAFLD.
  •  
7.
  • Caputo, Mara, et al. (författare)
  • Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease
  • 2021
  • Ingår i: FASEB Journal. - 0892-6638. ; 35:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.
  •  
8.
  • Caputo, Mara, et al. (författare)
  • STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes
  • 2021
  • Ingår i: Hepatology Communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 5:7, s. 1183-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating beta-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
  •  
9.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans
  • 2018
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 27:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A carbohydrate-restricted diet is a widely recommended intervention for non-alcoholic fatty liver disease (NAFLD), but a systematic perspective on the multiple benefits of this diet is lacking. Here, we performed a short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and characterized the resulting alterations in metabolism and the gut microbiota using a multi-omics approach. We observed rapid and dramatic reductions of liver fat and other cardiometabolic risk factors paralleled by (1) marked decreases in hepatic de novo lipogenesis; (2) large increases in serum beta-hydroxybutyrate concentrations, reflecting increased mitochondrial beta-oxidation; and (3) rapid increases in folate-producing Streptococcus and serum folate concentrations. Liver transcriptomic analysis on biopsy samples from a second cohort revealed downregulation of the fatty acid synthesis pathway and upregulation of folate-mediated one-carbon metabolism and fatty acid oxidation pathways. Our results highlight the potential of exploring diet-microbiota interactions for treating NAFLD.
  •  
10.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • Personal model-assisted identification of NAD(+) and glutathione metabolism as intervention target in NAFLD
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD(+) and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD(+) repletion on the development of NAFLD, we added precursors for GSH and NAD(+) biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Marschall, Hanns-Ulr ... (12)
Ståhlman, Marcus, 19 ... (11)
Cansby, Emmelie, 198 ... (8)
Mahlapuu, Margit, 19 ... (8)
Nuñez Durán, Esther (5)
visa fler...
Amrutkar, Manoj (4)
Nielsen, Jens B, 196 ... (3)
Uhlén, Mathias (3)
Zhang, C. (3)
Adiels, Martin, 1976 (3)
Björnson, Elias, 198 ... (3)
Taskinen, M. R. (2)
Soderlund, S (2)
Mardinoglu, Adil, 19 ... (2)
Hakkarainen, A. (2)
Lundbom, N. (2)
Sihlbom, Carina, 197 ... (2)
Sütt, Silva (2)
Blüher, Matthias (2)
Turkez, Hasan (1)
Mardinoglu, Adil (1)
Abdellah, Tebani (1)
Arif, Muhammad (1)
Lee, Sunjae (1)
Bäckhed, Fredrik, 19 ... (1)
Bergström, Göran, 19 ... (1)
Benfeitas, Rui (1)
Taskinen, Marja-Riit ... (1)
Matikainen, N. (1)
Soomets, Ursel (1)
Bidkhori, Gholamreza (1)
Parini, P (1)
Pedrelli, M (1)
Nair, Syam (1)
Johansson, Bengt R, ... (1)
Mancina, Rosellina M ... (1)
Romeo, Stefano, 1976 (1)
Kim, Woonghee (1)
Chursa, Urszula (1)
Smith, Ulf, 1943 (1)
Howell, B. W. (1)
Bluher, M. (1)
Kern, Matthias (1)
Perkins, Rosie, 1965 (1)
Parini, Paolo (1)
Klevstig, Martina (1)
Nyström, Jenny, 1972 (1)
Hallstrom, B. M. (1)
Pedrelli, Matteo (1)
visa färre...
Lärosäte
Göteborgs universitet (12)
Chalmers tekniska högskola (4)
Kungliga Tekniska Högskolan (3)
Karolinska Institutet (3)
Stockholms universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (6)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy