SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinez Bueno M) ;lar1:(su)"

Sökning: WFRF:(Martinez Bueno M) > Stockholms universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Calderón-Contreras, Rafael, et al. (författare)
  • A regional PECS node built from place-based social-ecological sustainability research in Latin America and the Caribbean
  • 2022
  • Ingår i: Ecosystems and People. - : Informa UK Limited. - 2639-5908 .- 2639-5916. ; 18:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainability requires a combination of meaningful co-production of locally relevant solutions, synthesis of insights gained across regions, and increased cooperation between science, policy and practice. The Programme for Ecosystem Change and Society (PECS) has been coordinating Place-Based Social-Ecological Sustainability Research (PBSESR) across the globe and emphasizes the need for regional scientific nodes from diverse biocultural regions to inform sustainability science and action. In this paper, we assess the strengths of the PBSESR communities in Latin America and the Caribbean (LAC). We provide an overview of PBSESR literature associated with this region and highlight the achievements of two prominent regional networks: The Social-Ecological Systems and Sustainability Research Network from Mexico (SocioEcoS) and the South American Institute for Resilience and Sustainability Studies from Uruguay (SARAS Institute). Finally, we identify the potential in these nodes to constitute a regional PECS node in Latin America and discuss the capacity needed to ensure such function. The results of the literature review show that while still loosely interconnected across the region, networks play key roles in connecting otherwise cloistered teams and we illustrate how the SocioEcoS network (focusing on transdisciplinary co-production of knowledge towards sustainability) and the SARAS Institute (focusing on innovative approaches for looking at complex social-ecological problems, rooted in slow science and arts) operate as key connectors in the region. We conclude that these organizations combined can embody a Latin American node for PECS, and would thereby not only contribute to regional but also global capacities to advance the sustainability agenda. 
  •  
4.
  • Suarez, David Orozco, et al. (författare)
  • CMAG : A Mission to Study and Monitor the Inner Corona Magnetic Field
  • 2023
  • Ingår i: Aerospace. - 2226-4310. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring magnetic fields in the inner corona, the interface between the solar chromosphere and outer corona, is of paramount importance if we aim to understand the energetic transformations taking place there, and because it is at the origin of processes that lead to coronal heating, solar wind acceleration, and of most of the phenomena relevant to space weather. However, these measurements are more difficult than mere imaging because polarimetry requires differential photometry. The coronal magnetograph mission (CMAG) has been designed to map the vector magnetic field, line-of-sight velocities, and plane-of-the-sky velocities of the inner corona with unprecedented spatial and temporal resolutions from space. This will be achieved through full vector spectropolarimetric observations using a coronal magnetograph as the sole instrument on board a spacecraft, combined with an external occulter installed on another spacecraft. The two spacecraft will maintain a formation flight distance of 430 m for coronagraphic observations, which requires a 2.5 m occulter disk radius. The mission will be preferentially located at the Lagrangian L5 point, offering a significant advantage for solar physics and space weather research. Existing ground-based instruments face limitations such as atmospheric turbulence, solar scattered light, and long integration times when performing coronal magnetic field measurements. CMAG overcomes these limitations by performing spectropolarimetric measurements from space with an external occulter and high-image stability maintained over time. It achieves the necessary sensitivity and offers a spatial resolution of 2.5 '' and a temporal resolution of approximately one minute, in its nominal mode, covering the range from 1.02 solar radii to 2.5 radii. CMAG relies on proven European technologies and can be adapted to enhance any other solar mission, offering potential significant advancements in coronal physics and space weather modeling and monitoring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy