SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mashadi Fathali Hoda 1983) "

Sökning: WFRF:(Mashadi Fathali Hoda 1983)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunevall, Johan, 1984, et al. (författare)
  • Characterizing the Catecholamine Content of Single Mammalian Vesicles by Collision-Adsorption Events at an Electrode
  • 2015
  • Ingår i: Journal of the American Chemical Society. - 0002-7863 .- 1520-5126. ; 137:13, s. 4344-4346
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the electrochemical response to single adrenal chromaffin vesicles filled with catecholamine hormones as they are adsorbed and rupture on a 33 mu m diameter disk-shaped carbon electrode. The vesicles adsorb onto the electrode surface and sequentially spread out over the electrode surface, trapping their contents against the electrode. These contents are then oxidized, and a current (or amperometric) peak results from each vesicle that bursts. A large number of current transients associated with rupture of single vesicles (86%) are observed under the experimental conditions used, allowing us to quantify the vesicular catecholamine content.
  •  
2.
  • Li, Xianchan, 1982, et al. (författare)
  • Quantitative Measurement of Transmitters in Individual Vesicles in the Cytoplasm of Single Cells with Nanotip Electrodes
  • 2015
  • Ingår i: Angewandte Chemie International Edition. - 1433-7851 .- 1521-3773. ; 54:41, s. 11978-11982
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of vesicular transmitter content is important for studying the mechanisms of neurotransmission and malfunction in disease, and yet it is incredibly difficult to measure the tiny amounts of neurotransmitters in the attoliter volume of a single vesicle, especially in the cell environment. We introduce a novel method, intracellular vesicle electrochemical cytometry. A nanotip conical carbon-fiber microelectrode was used to electrochemically measure the total content of electroactive neurotransmitters in individual nanoscale vesicles in single PC12 cells as these vesicles lysed on the electrode inside the living cell. The results demonstrate that only a fraction of the quantal neurotransmitter content is released during exocytosis. These data support the intriguing hypothesis that the vesicle does not open all the way during the normal exocytosis process, thus resulting in incomplete expulsion of the vesicular contents.
  •  
3.
  • Majdi, Soodabeh, 1980, et al. (författare)
  • Selected recent in vivo studies on chemical measurements in invertebrates
  • 2015
  • Ingår i: Analyst. - 0003-2654 .- 1364-5528. ; 140:11, s. 3676-3686
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo measurements of neurotransmitters and related compounds have provided a better understanding of the chemical interactions that are a major part in functioning of brains. In addition, a great deal of technology has been developed to measure chemical species in other areas of living organisms. A key part of this work has been sampling technologies as well as direct measurements in vivo. This is extremely important when sampling from the smallest animal systems. Yet, very small invertebrate systems are excellent models and often have better defined and more easily manipulated genetics. This review focuses on in vivo measurements, electrochemical methods, fluorescence techniques, and sampling and is further narrowed to work over approximately the last three years. Rapid developments of in vivo studies in these model systems should aid in finding solutions to biological and bioanalytical challenges related to human physiological functions and neurodegenerative diseases.
  •  
4.
  • Karlsson, Johan, 1984, et al. (författare)
  • The effect of alendronate on biomineralization at the bone/implant interface
  • 2016
  • Ingår i: Journal of Biomedical Materials Research - Part A. - 1549-3296 .- 1552-4965. ; 104:3, s. 620-629
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent approach to improve osseointegration of implants is to utilize local drug administration. The presence of an osteoporosis drug may influence both bone quantity and quality at the bone/implant interface. Despite this, the performance of bone-anchoring implants is traditionally evaluated only by quantitative measurements. In the present study, the osteoporosis drug alendronate (ALN) was administrated from mesoporous titania thin films that were coated onto titanium implants. The effect that the drug had on biomineralization was explored both in vitro using simulated body fluid (SBF) and in vivo in a rat tibia model. The SBF study showed that the apatite formation was completely hindered at a high concentration of ALN (0.1 mg/ml). However, when ALN was administrated from the mesoporous coating the surface became completely covered with apatite. Ex vivo characterization of the bone/implant interface using Raman spectroscopy demonstrated that the presence of ALN enhanced the bone mineralization, and that the chemical signature of newly formed bone in the presence of ALN had a higher resemblance to the pre-existing mature bone than to the bone formed without drug. Taken together, this study demonstrates the importance of evaluating the quality of the formed bone to better understand the performance of implants.
  •  
5.
  • Fathali, H., et al. (författare)
  • Extracellular Osmotic Stress Reduces the Vesicle Size while Keeping a Constant Neurotransmitter Concentration
  • 2017
  • Ingår i: Acs Chemical Neuroscience. - 1948-7193. ; 8:2, s. 368-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Secretory cells respond to hypertonic stress by cell shrinking, which causes a reduction in exocytosis activity and the amount of signaling molecules released from single exocytosis events. These changes in exocytosis have been suggested to result from alterations in biophysical properties of cell cytoplasm and plasma membrane, based on the assumption that osmotic stress does not affect the secretory vesicle content and size prior to exocytosis. To further investigate whether vesicles in secretory cells are affected by the osmolality of the extracellular environment, we used intracellular electrochemical cytometry together with transmission electron microscopy imaging to quantify and determine the catecholamine concentration of dense core vesicles in situ before and after cell exposure to osmotic stress. In addition, single cell amperometry recordings of exocytosis at chromaffin cells were used to monitor the effect on exocytosis activity and quantal release when cells were exposed to osmotic stress. Here we show that hypertonic stress hampers exocytosis secretion after the first pool of readily releasable vesicles have been fused and that extracellular osmotic stress causes catecholamine filled vesicles to shrink, mainly by reducing the volume of the halo solution surrounding the protein matrix in dense core vesicles. In addition, the vesicles demonstrate the ability to perform adjustments in neurotransmitter content during shrinking, and intracellular amperometry measurements in situ suggest that vesicles reduce the catecholamine content to maintain a constant concentration within the vesicle compartment. Hence, the secretory vesicles in the cell cytoplasm are highly affected and respond to extracellular osmotic stress, which gives a new perspective to the cause of reduction in quantal size by these vesicles when undergoing exocytosis.
  •  
6.
  • Fathali, H., et al. (författare)
  • Monitoring the Effect of Osmotic Stress on Secretory Vesicles and Exocytosis
  • 2018
  • Ingår i: Journal of Visualized Experiments. - 1940-087X. ; :132, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Amperometry recording of cells subjected to osmotic shock show that secretory cells respond to this physical stress by reducing the exocytosis activity and the amount of neurotransmitter released from vesicles in single exocytosis events. It has been suggested that the reduction in neurotransmitters expelled is due to alterations in membrane biophysical properties when cells shrink in response to osmotic stress and with assumptions made that secretory vesicles in the cell cytoplasm are not affected by extracellular osmotic stress. Amperometry recording of exocytosis monitors what is released from cells the moment a vesicle fuses with the plasma membrane, but does not provide information on the vesicle content before the vesicle fusion is triggered. Therefore, by combining amperometry recording with other complementary analytical methods that are capable of characterizing the secretory vesicles before exocytosis at cells is triggered offers a broader overview for examining how secretory vesicles and the exocytosis process are affected by osmotic shock. We here describe how complementing amperometry recording with intracellular electrochemical cytometry and transmission electron microscopy (TEM) imaging can be used to characterize alterations in secretory vesicles size and neurotransmitter content at chromaffin cells in relation to exocytosis activity before and after exposure to osmotic stress. By linking the quantitative information gained from experiments using all three analytical methods, conclusions were previously made that secretory vesicles respond to extracellular osmotic stress by shrinking in size and reducing the vesicle quantal size to maintain a constant vesicle neurotransmitter concentration. Hence, this gives some clarification regarding why vesicles, in response to osmotic stress, reduce the amount neurotransmitters released during exocytosis release. The amperometric recordings here indicate this is a reversible process and that vesicle after osmotic shock are refilled with neurotransmitters when placed cells are reverted into an isotonic environment.
  •  
7.
  • Wang, Y. M., et al. (författare)
  • Counting the Number of Glutamate Molecules in Single Synaptic Vesicles
  • 2019
  • Ingår i: Journal of the American Chemical Society. - 0002-7863 .- 1520-5126. ; 141:44, s. 17507-17511
  • Tidskriftsartikel (refereegranskat)abstract
    • Analytical tools for quantitative measurements of glutamate, the principal excitatory neurotransmitter in the brain, are lacking. Here, we introduce a new enzyme-based amperometric sensor technique for the counting of glutamate molecules stored inside single synaptic vesicles. In this method, an ultra-fast enzyme-based glutamate sensor is placed into a solution of isolated synaptic vesicles, which stochastically rupture at the sensor surface in a potential-dependent manner at a constant negative potential. The continuous amperometric signals are sampled at high speed (10 kHz) to record sub-millisecond spikes, which represent glutamate release from single vesicles that burst open. Glutamate quantification is achieved by a calibration curve that is based on measurements of glutamate release from vesicles pre-filled with various glutamate concentrations. Our measurements show that an isolated single synaptic vesicle encapsulates about 8000 glutamate molecules and is comparable to the measured exocytotic quantal glutamate release in amperometric glutamate sensing in the nucleus accumbens of mouse brain tissue. Hence, this new methodology introduces the means to quantify ultra-small amounts of glutamate and to study synaptic vesicle physiology, pathogenesis, and drug treatments for neuronal disorders where glutamate is involved.
  •  
8.
  • Claesson, Maria, 1985, et al. (författare)
  • Improved QCM-D signal-to-noise ratio using mesoporous silica and titania
  • 2012
  • Ingår i: Sensors and Actuators, B: Chemical. - 0925-4005. ; 166, s. 526-534
  • Tidskriftsartikel (refereegranskat)abstract
    • In many biological and environmental applications it is crucial to detect low concentrations of low molecular weight analytes. To accomplish this a variety of surface sensing techniques, such as quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR), have been developed. These techniques provide good sensitivity and selectivity, however, there is a need to improve these even further by enhancing the signal-to-noise ratio. One suggestion to improve the QCM-D signal is to use mesoporous coated QCM-D sensor crystals as sensing substrate. Mesoporous materials are promising to use, since they possess a high specific surface area and that their properties, such as pore size, pore geometry and surface chemistry, can be controlled. Here we demonstrate a method to increase the signal-to-noise ratio of the QCM-D signal illustrated by adsorbing dendrimers on mesoporous silica and titania coated QCM-D crystals. The experiments were performed on cubic mesoporous silica having varying pore sizes and hexagonal and cubic mesoporous titania having similar pore size. The results showed that the QCM-D signal-to-noise was improved when mesoporous material was used and that the pore size and pore geometry determined the selectivity of the adsorbing analyte. These findings are important in the detection of analytes at low concentrations using QCM-D.
  •  
9.
  • Karlsson, Johan, 1984, et al. (författare)
  • In vivo biomechanical stability of osseointegrating mesoporous TiO2 implants
  • 2012
  • Ingår i: Acta Biomaterialia. - 1742-7061. ; 8:12, s. 4438-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO(2) coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.
  •  
10.
  • Mashadi Fathali, Hoda, 1983, et al. (författare)
  • Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release
  • 2018
  • Ingår i: Pflugers Archiv European Journal of Physiology. - 0031-6768 .- 1432-2013. ; 470:1, s. 125-134
  • Forskningsöversikt (refereegranskat)abstract
    • Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy