SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maslava Natallia) "

Sökning: WFRF:(Maslava Natallia)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bimpisidis, Zisis, et al. (författare)
  • Differential effects of gaseous versus injectable anesthetics on changes in regional cerebral blood flow and metabolism induced by l-DOPA in a rat model of Parkinson's disease
  • 2017
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 292, s. 113-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF - [(14)C]-iodoantipyrine) and regional cerebral metabolic rate (rCMR - [(14)C]-2-deoxyglucose) with a highly sensitive autoradiographic method. The two types of anesthetics had quite distinct effects on l-DOPA-induced changes in rCBF and rCMR. Isoflurane did not affect either the absolute rCBF values or the increases in rCBF in the basal ganglia after l-DOPA administration. On the contrary, rats anesthetized with ketamine/xylazine showed lower absolute rCBF values, and the rCBF increases induced by l-DOPA were masked. We developed a novel improved model to calculate rCMR, and found lower metabolic activities in rats anesthetized with isoflurane compared to animals anesthetized with ketamine/xylazine. Both anesthetics prevented changes in rCMR upon l-DOPA administration. Pharmacological challenges in isoflurane-anesthetized rats indicated that drugs mimicking the actions of ketamine/xylazine on adrenergic or glutamate receptors reproduced distinct effects of the injectable anesthetics on rCBF and rCMR. Our results highlight the importance of anesthesia in studies of cerebral flow and metabolism, and provide novel insights into mechanisms mediating abnormal neurovascular responses to l-DOPA in Parkinson's disease.
  •  
2.
  • Fieblinger, Tim, et al. (författare)
  • Mechanisms of Dopamine D1 Receptor-Mediated ERK1/2 Activation in the Parkinsonian Striatum and Their Modulation by Metabotropic Glutamate Receptor Type 5
  • 2014
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 34:13, s. 4728-4740
  • Tidskriftsartikel (refereegranskat)abstract
    • In animal models of Parkinsons disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonistMTEPin the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA-and Ca2+ -dependent signaling pathways that is critically modulated by striatal mGluR5.
  •  
3.
  •  
4.
  • Iderberg, Hanna, et al. (författare)
  • Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist.
  • 2015
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 1873-7064 .- 0028-3908. ; 95, s. 121-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabotropic glutamate receptor 4 (mGlu4) negatively modulates GABA and glutamate release in the 'indirect pathway' of the basal ganglia, and has thus been proposed as a potential target to treat motor symptoms in Parkinson's disease. Here, we present an extensive comparison of the behavioural effects produced by the mGlu4 positive allosteric modulator (PAM), VU0364770, and the mGlu4 orthosteric agonist, LSP1-2111, in rats with unilateral 6-OHDA lesions. The compounds' activity was initially assessed in a test of haloperidol-induced catalepsy in intact rats, and effective doses were then evaluated in the hemiparkinsonian animal model. Neither of the two compounds modified the development of dyskinetic behaviours elicited by chronic treatment with full doses of l-DOPA. When given together with l-DOPA to rats with already established dyskinesias, neither VU0364770 nor LSP1-2111 modified the abnormal involuntary movement scores. VU0364770 potentiated, however, the motor stimulant effect of a subthreshold l-DOPA dose in certain behavioural tests, whereas LSP1-2111 lacked this ability. Taken together, these results indicate that a pharmacological stimulation of mGlu4 lacks intrinsic antidyskinetic activity, but may have DOPA-sparing activity in Parkinson's disease. For the latter indication, mGlu4 PAMs appear to provide a better option than orthosteric agonists.
  •  
5.
  • Sebastianutto, Irene, et al. (författare)
  • D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease
  • 2020
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 130:3, s. 1168-1184
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson’s disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson’s disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5–dependent PLC signaling was causally linked with excessive activation of extracellular signal–regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson’s disease.
  •  
6.
  • Sebastianutto, Irene, et al. (författare)
  • Validation of an improved scale for rating L-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists
  • 2016
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 96, s. 156-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Rodent models of L-DOPA-induced dyskinesia (LID) are essential to investigate pathophysiological mechanisms and treatment options. Ratings of abnormal involuntary movements (AIMs) are used to capture both qualitative and quantitative features of dyskinetic behaviors. Thus far, validated rating scales for the mouse have anchored the definition of severity to the time during which AIMs are present. Here we have asked whether the severity of axial, limb, and orolingual AIMs can be objectively assessed with scores based on movement amplitude. Mice sustained 6-OHDA lesions in the medial forebrain bundle and were treated with L-DOPA (3–6 mg/kg/day) until they developed stable AIMs scores. Two independent investigators rated AIM severity using both the validated time-based scale and a novel amplitude scale, evaluating the degree of deviation of dyskinetic body parts relative to their resting position. The amplitude scale yielded a high degree of consistency both within- and between raters. Thus, time-based scores, amplitude scores, and a combination of the two (‘global AIM scores’) were applied to compare antidyskinetic effects produced by amantadine and by the following subtype-specific DA receptor antagonists: SCH23390 (D1/D5), Raclopride (D2/D3), PG01037 (D3), L-745,870 (D4), and VU6004461 (D4). SCH23390 and Raclopride produced similarly robust reductions in both time-based scores and amplitude scores, while PG01037 and L-745,870 had more partial effects. Interestingly, a novel and highly brain penetrable D4 receptor antagonist (VU6004461) markedly attenuated both time-based and amplitude scores without diminishing the general motor stimulant effect of L-DOPA. In summary, our results show that a dyskinesia scale combining a time dimension with an amplitude dimension (‘global AIMs’) is more sensitive than unidimensional scales. Moreover, the antidyskinetic effects produced by two chemically distinct D4 antagonists identify the D4 receptor as a potential future target for the treatment of LID.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy