SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Masters Colin L) ;hsvcat:3"

Sökning: WFRF:(Masters Colin L) > Medicin och hälsovetenskap

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhiman, Kunal, et al. (författare)
  • Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer's disease.
  • 2020
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) in Alzheimer's disease (AD) diagnosis, its association with amyloid and tau pathology, as well as its potential to predict brain atrophy, cognition, and amyloid accumulation.CSF NfL concentration was measured in 221 participants from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL).CSF NfL levels as well as NfL/amyloid β (Aβ42) were significantly elevated in AD compared to healthy controls (HC; P < .001), and in mild cognitive impairment (MCI) compared to HC (P = .008 NfL; P < .001 NfL/Aβ42). CSF NfL and NfL/Aβ42 differentiated AD from HC with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 and 0.90, respectively. CSF NfL and NfL/Aβ42 predicted cortical amyloid load, brain atrophy, and cognition.CSF NfL is a biomarker of neurodegeneration, correlating with cognitive impairment and brain neuropathology.
  •  
2.
  • Khan, Wasim, et al. (författare)
  • A Multi-Cohort Study of ApoE epsilon 4 and Amyloid-beta Effects on the Hippocampus in Alzheimer's Disease
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 56:3, s. 1159-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-beta (A beta) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in epsilon 4 carriers with positron emission tomography (PET) A beta who were dichotomized (A beta+/A beta-) using previous cut-offs. We found a linear reduction in hippocampal volumes with epsilon 4 carriers possessing the smallest volumes, epsilon 3 carriers possessing intermediate volumes, and epsilon 2 carriers possessing the largest volumes. Moreover, AD and MCI epsilon 4 carriers possessed the smallest hippocampal volumes and control epsilon 2 carriers possessed the largest hippocampal volumes. Subjects with both APOE epsilon 4 and A beta positivity had the lowest hippocampal volumes when compared to A beta-epsilon 4 carriers, suggesting a synergistic relationship between APOE epsilon 4 and A beta. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE epsilon 4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
4.
  • Chatterjee, Pratishtha, et al. (författare)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
5.
  • Ossenkoppele, Rik, et al. (författare)
  • Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:11, s. 2381-2387
  • Tidskriftsartikel (refereegranskat)abstract
    • A major unanswered question in the dementia field is whether cognitively unimpaired individuals who harbor both Alzheimer's disease neuropathological hallmarks (that is, amyloid-β plaques and tau neurofibrillary tangles) can preserve their cognition over time or are destined to decline. In this large multicenter amyloid and tau positron emission tomography (PET) study (n = 1,325), we examined the risk for future progression to mild cognitive impairment and the rate of cognitive decline over time among cognitively unimpaired individuals who were amyloid PET-positive (A+) and tau PET-positive (T+) in the medial temporal lobe (A+TMTL+) and/or in the temporal neocortex (A+TNEO-T+) and compared them with A+T- and A-T- groups. Cox proportional-hazards models showed a substantially increased risk for progression to mild cognitive impairment in the A+TNEO-T+ (hazard ratio (HR) = 19.2, 95% confidence interval (CI) = 10.9-33.7), A+TMTL+ (HR = 14.6, 95% CI = 8.1-26.4) and A+T- (HR = 2.4, 95% CI = 1.4-4.3) groups versus the A-T- (reference) group. Both A+TMTL+ (HR = 6.0, 95% CI = 3.4-10.6) and A+TNEO-T+ (HR = 7.9, 95% CI = 4.7-13.5) groups also showed faster clinical progression to mild cognitive impairment than the A+T- group. Linear mixed-effect models indicated that the A+TNEO-T+ (β = -0.056 ± 0.005, T = -11.55, P < 0.001), A+TMTL+ (β = -0.024 ± 0.005, T = -4.72, P < 0.001) and A+T- (β = -0.008 ± 0.002, T = -3.46, P < 0.001) groups showed significantly faster longitudinal global cognitive decline compared to the A-T- (reference) group (all P < 0.001). Both A+TNEO-T+ (P < 0.001) and A+TMTL+ (P = 0.002) groups also progressed faster than the A+T- group. In summary, evidence of advanced Alzheimer's disease pathological changes provided by a combination of abnormal amyloid and tau PET examinations is strongly associated with short-term (that is, 3-5 years) cognitive decline in cognitively unimpaired individuals and is therefore of high clinical relevance.
  •  
6.
  • Delaby, Constance, et al. (författare)
  • Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:10, s. 1868-1879
  • Tidskriftsartikel (refereegranskat)abstract
    • The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests.We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients.The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis.This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
  •  
7.
  • Dhiman, Kunal, et al. (författare)
  • Cerebrospinal fluid levels of fatty acid-binding protein 3 are associated with likelihood of amyloidopathy in cognitively healthy individuals.
  • 2022
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acid-binding protein 3 (FABP3) is a biomarker of neuronal membrane disruption, associated with lipid dyshomeostasis-a notable Alzheimer's disease (AD) pathophysiological change. We assessed the association of cerebrospinal fluid (CSF) FABP3 levels with brain amyloidosis and the likelihood/risk of developing amyloidopathy in cognitively healthy individuals.FABP3 levels were measured in CSF samples of cognitively healthy participants, > 60 years of age (n = 142), from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL).FABP3 levels were positively associated with baseline brain amyloid beta (Aβ) load as measured by standardized uptake value ratio (SUVR, standardized β = 0.22, P = .009) and predicted the change in brain Aβ load (standardized β = 0.32, P = .004). Higher levels of CSF FABP3 (above median) were associated with a likelihood of amyloidopathy (odds ratio [OR] 2.28, 95% confidence interval [CI] 1.12 to 4.65, P = .023).These results support inclusion of CSF FABP3 as a biomarker in risk-prediction models of AD.
  •  
8.
  • Faux, Noel G, et al. (författare)
  • PBT2 Rapidly Improves Cognition in Alzheimer's Disease : Additional Phase II Analyses
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 20:2, s. 509-516
  • Tidskriftsartikel (refereegranskat)abstract
    • PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta_{42}, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10;{-9}), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.
  •  
9.
  • Naylor, Mary D, et al. (författare)
  • Advancing Alzheimer's disease diagnosis, treatment, and care: recommendations from the Ware Invitational Summit.
  • 2012
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 8:5, s. 445-52
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the pending public health crisis due to Alzheimer's disease (AD) and related neurodegenerative disorders, the Marian S. Ware Alzheimer Program at the University of Pennsylvania held a meeting entitled "State of the Science Conference on the Advancement of Alzheimer's Diagnosis, Treatment and Care," on June 21-22, 2012. The meeting comprised four workgroups focusing on Biomarkers; Clinical Care and Health Services Research; Drug Development; and Health Economics, Policy, and Ethics. The workgroups shared, discussed, and compiled an integrated set of priorities, recommendations, and action plans, which are presented in this article.
  •  
10.
  • Kang, Matthew J.Y., et al. (författare)
  • Cerebrospinal fluid neurofilament light predicts longitudinal diagnostic change in patients with psychiatric and neurodegenerative disorders
  • 2023
  • Ingår i: Acta Neuropsychiatrica. - 0924-2708. ; 36:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. Methods We collected longitudinal diagnostic information (mean=36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other), and PSY. We pre-specified NfL>582pg/mL as indicative of ND/MCI/other. Results Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. Conclusions CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy