SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mathias RA) "

Sökning: WFRF:(Mathias RA)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bethlehem, RAI, et al. (författare)
  • Brain charts for the human lifespan
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:79057906, s. 525-
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Hoppe, Mathias, 1993, et al. (författare)
  • Modeling synchrotron radiation images of runaway electrons
  • 2017
  • Ingår i: 15th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • One of the most powerful means of studying runaway electrons in tokamaks is by measuring the synchrotron radiation they emit. In many current experiments, visible light and IR cameras are used to study the synchrotron radiation spot, and spectrometers measure the synchrotron radiation spectrum. Due to the strong dependence on the particle energy, pitch angle and radial position in both the synchrotron spot and spectrum, these can be used to extract valuable information about the runaway electron distribution function. Obtaining accurate information about the runaway electron distribution function from synchrotron radiation measurements however, requires both the magnetic field, camera location and camera spectral range to be handled properly and taken into account. In this contribution we present the synthetic synchrotron diagnostic SOFT (Synchrotron-detecting Orbit Following Toolkit) which simulates the synchrotron radiation from a population of runaway electrons whose energy, pitch angle and radial location are known in the outer midplane. By following the guiding-center orbits of the population, effects arising due to the inhomogeneity of the magnetic field are incorporated, which we show have significant effects on both the synchrotron radiation spot and spectrum.As an application of SOFT, we try to reproduce asynchrotron image from one discharge in the Alcator C-Mod tokamak. By taking measured parameters of the Alcator C-Mod discharge, a distribution function is obtained with the Fokker-Planck solver CODE, for which the emitted synchrotron radiation can then be simulated in SOFT, which shows good agreement. With SOFT, an interpretation for the synchrotron radiation spot observed in experiment can be given, and the characteristic comet shape of the Alcator C-Mod synchrotron radiation spot is shown to be the result of the vertical placement of the camera, together with the narrow set of pitch angles possessed by the particles, as well as their radial distribution.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy