SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) ;pers:(Aguilera Medina Luis 1983)"

Sökning: WFRF:(Matic Aleksandar 1968) > Aguilera Medina Luis 1983

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilera Medina, Luis, 1983, et al. (författare)
  • A structural study of LiTFSI-tetraglyme mixtures: From diluted solutions to solvated ionic liquids
  • 2015
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 210:Part B, s. 238-242
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the nano-structure of solvated ionic liquids (SILs) formed by dissolving a Li-salt (LiTFSI) in the solvent tetraglyme. Using small angle X-ray scattering (SAXS), supported by Raman spectroscopy and computational modeling we follow how the nano-structure develops as Li-salt is added to the solvent. We find that, as the Li-salt concentration is increased a peak at Q 0.95 Å- 1 grows in intensity, signaling the presence of structural correlations typical of those found in traditional ionic liquids. The intensity of the peak reaches its maximum at the equimolar concentration, where each Li-ion can be solvated by one solvent molecule forming an effective cation complex. Combining the SAXS data with computer modeling we show that this peak can be assigned to charge alternation, also found in traditional ionic liquids. However, we also show that even at the equimolar concentration not all Li-ions are solvated by the solvent molecules, but a small fraction interacts directly with the anion (TFSI).
  •  
2.
  • Aguilera Medina, Luis, 1983, et al. (författare)
  • Enhanced low-temperature ionic conductivity via different Li+ solvated clusters in organic solvent/ionic liquid mixed electrolytes
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 18:36, s. 25458-25464
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate Li+ coordination in mixed electrolytes based on ionic liquids (ILs) and organic solvents and its relation with the macroscopic properties such as phase behaviour and ionic conductivity. Using Raman spectroscopy we determine the solvation shell around Li+ in mixtures formed by the IL N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide, the organic solvents ethylene carbonate and dimethyl carbonate (EC : DMC 1 : 1), and the salt LiTFSI. We find that the organic solvent molecules preferentially solvate Li+ as long as there are enough of them. Our results are consistent with a model where Li(EC)(3)(DMC)(1) and Li(EC)(2)(DMC)(2) are the main complexes formed by the organic solvent molecules and where TFSI- mainly participates in Li(TFSI)(2)(-) clusters. As the amount of organic solvent is increased, the number of TFSI- around Li+ rapidly decreases showing a higher affinity of the organic solvents to solvate Li+. The changes in the local configurations are also reflected in the ionic conductivity and the phase behaviour. The formation of larger clusters leads to a decrease in the conductivity, whereas the presence of several different clusters at intermediate compositions effectively hinders crystallization at low temperatures. The result is an enhanced low-temperature ionic conductivity in comparison with the pure IL or organic solvent electrolytes.
  •  
3.
  • Aguilera Medina, Luis, 1983, et al. (författare)
  • The effect of lithium salt doping on the nanostructure of ionic liquids
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:40, s. 27082-27087
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we report on the evolution of the structure of two model ionic liquid families, N-alkyl-N-methylpyrrolidinium (Pyr1n-TFSI) and 1-alkyl-3-methylimidazolium (CnMIm-TFSI) (n = 3, 4, 6 and 8) both containing the bis(trifluoromethanesulfonyl)imide (TFSI) anion, upon the addition of LiTFSI using small angle X-ray scattering (SAXS). The introduction of a lithium salt (Li-salt) tunes the interactions through the substitution of the large cation in the ionic liquid with the small and charge localized lithium ion, thus increasing the coulombic contribution from ion-ion interactions. We find that the introduction of lithium ions results in a restructuring of the polar groups in the ionic liquids. These changes are manifested as an increase in the correlation lengths related to charge alternation of the ions and a more disordered structure. This restructuring is interpreted as a reconfiguration of the anions as they coordinate to the small and ionic lithium. In contrast, the length scale of the mesoscopic heterogeneities related to the clustering of alkyl chains is virtually unchanged with lithium doping. Moreover, the correlation corresponding to alkyl chain domains becomes more well defined with increasing salt concentration, suggesting that Li-salt doping, i.e. an increased columbic interaction in the system, promotes clustering of the alkyl tails.
  •  
4.
  • Lombardo, L., et al. (författare)
  • In-situ gelled electrolyte for lithium battery: Electrochemical and Raman characterization
  • 2014
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 245, s. 232-235
  • Tidskriftsartikel (refereegranskat)abstract
    • n this paper we report a polymer lithium cell using a PVdF-based, gel-type electrolyte formed in-situ during cell assembly. The gel electrolyte formation is monitored prior to cell assembly by electro-chemical impedance spectroscopy and by Raman spectroscopy in order to determine the characteristics of the lithium salt diffusion into the gel-membrane. The results show an efficient gel formation and a fast lithium salt diffusion, this finally resulting in an optimized behaviour in a lithium cell using a high voltage spinel-type cathode. We believe that the results here reported may contribute to the enhancement of the safety of lithium batteries. (C) 2013 Elsevier B.V. All rights reserved.
  •  
5.
  • Lundin, Filippa, 1992, et al. (författare)
  • Structure and dynamics of highly concentrated LiTFSI/acetonitrile electrolytes
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 23:25, s. 13819-13826
  • Tidskriftsartikel (refereegranskat)abstract
    • High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration. Already at low concentrations ordering on microscopic length scales in the electrolytes is revealed by small angle X-ray scattering, as a result of correlations of Li+ coordinating clusters. For higher salt concentrations a charge alternation-like ordering is found as anions start to take part in the solvation. Results from quasi-elastic neutron spectroscopy reveal a jump diffusion dynamical process with jump lengths virtually independent of both temperature and Li-salt concentration. The jump can be envisaged as dissociation of a solvent molecule or anion from a particular Li+ solvation structure. The residence time, 50-800 ps, between the jumps is found to be highly temperature and Li-salt concentration dependent, with shorter residence times for higher temperature and lower concentrations. The increased residence time at high Li-salt concentration can be attributed to changes in the interaction of the solvation shell as a larger fraction of TFSI anions take part in the solvation, forming more stable solvation shells.
  •  
6.
  • Martins, Murillo L., et al. (författare)
  • Encapsulation of paclitaxel into a bio-nanocomposite. A study combining inelastic neutron scattering to thermal analysis and infrared spectroscopy
  • 2015
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 83
  • Konferensbidrag (refereegranskat)abstract
    • The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.
  •  
7.
  • Nordström, Jonas, 1980, et al. (författare)
  • Effect of Lithium Salt on the Stability of Dispersions of Fumed Silica in the Ionic Liquid BMImBF4
  • 2012
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 28:9, s. 4080-4085
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the stability and the interactions in dispersions of colloidal fumed silica, Aerosil 200, and the ionic liquid 1-butyl-3-methylimidazolium tetraflouroborate (BMImBF4) as a function of Li-salt concentration (LiBF4). Photon correlation spectroscopy was used to study the aggregation behavior at low silica concentration and Raman spectroscopy was used to investigate the interactions in the ionic liquid and with the silica surface. We find that the addition of LiBF4 increases the stability of the dispersions, with smaller agglomerates of silica particles and higher gelation concentrations in the presence of Li-salt. The increased stability with the addition of Li-salt is explained by the formation of a more stable solvation layer, where Li-ions accumulate on the surface. This leads to an increased interaction between lithium ions and the BF4- anions in the solvation layer as seen by Raman spectroscopy. Upon gelation the Li-ions are expelled from the surface as hydrogen bonding between the silica particles are formed. For both neat BMImBF4 and Li-salt doped BMImBF4/silica dispersions a weak gel phase was found preceding the formation of a strong gel at slightly higher silica concentrations.
  •  
8.
  • Verwohlt, Jan, et al. (författare)
  • Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids
  • 2018
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 120:16
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG. We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG.
  •  
9.
  • Xiong, Shizhao, 1985, et al. (författare)
  • Role of organic solvent addition to ionic liquid electrolytes for lithium–sulphur batteries
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069.
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the role of the addition of an organic solvent to an ionic liquid electrolyte for the performance of lithium–sulphur (Li–S) batteries. We find that with a mixed electrolyte, formed by adding 10 wt% 1,3-dioxolane (DIOX) to an ionic liquid, the capacity of a Li–S cell is more than doubled, the rate capability and the cycling performance considerably improved, compared to a cell utilizing a neat ionic liquid electrolyte. The improved performance can be correlated with an enhanced ion transport, evidenced by an increased ionic conductivity and higher limiting current density, directly related to a decrease in viscosity and glass transition temperature of the mixed electrolytes. We show that this in turn is linked to a change in the local environment of the Li-ions where the organic solvent is incorporated in the coordination shell. In addition we show that the mixed electrolytes have a considerably higher thermal stability, in particular a dramatically increased flash point, and improved low temperature properties with respect to a conventional organic solvent based electrolyte currently used for Li–S batteries.
  •  
10.
  • Yaghini, Negin, 1976, et al. (författare)
  • Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions
  • 2017
  • Ingår i: Physical Chemistry Chemical Physics. - 1463-9084 .- 1463-9076. ; 19:8, s. 5727-5736
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, C6C1ImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.e. in the nano-sized pore domains) and observed in the whole temperature window investigated (i.e. from −10 to 140 °C). Solid-state NMR, diffusion NMR and dielectric spectroscopy concomitantly demonstrate this effect. The origin of this enhancement is explained in terms of weaker intermolecular interactions and a consequent flipped-ion effect at the silica interface strongly supported by 2D solid-state NMR experiments. The possibility to significantly enhance the ionic mobility by controlling the nature of surface interactions is extremely important in the field of materials science and highlights these structurally tunable gels as promising solid-like electrolytes for use in energy relevant devices. These include, but are not limited to, Li-ion batteries and proton exchange membrane (PEM) fuel cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy