SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) ;pers:(Hwang Jang Yeon)"

Sökning: WFRF:(Matic Aleksandar 1968) > Hwang Jang Yeon

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agostini, Marco, 1987, et al. (författare)
  • Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density
  • 2018
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 8:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfur electrodes confined in an inert carbon matrix show practical limitations and concerns related to low cathode density. As a result, these electrodes require a large amount of electrolyte, normally three times more than the volume used in commercial Li-ion batteries. Herein, a high-energy and high-performance lithium–sulfur battery concept, designed to achieve high practical capacity with minimum volume of electrolyte is proposed. It is based on deposition of polysulfide species on a self-standing and highly conductive carbon nanofiber network, thus eliminating the need for a binder and current collector, resulting in high active material loading. The fiber network has a functionalized surface with the presence of polar oxygen groups, with the aim to prevent polysulfide migration to the lithium anode during the electrochemical process, by the formation of S–O species. Owing to the high sulfur loading (6 mg cm−2) and a reduced free volume of the sulfide/fiber electrode, the Li–S cell is designed to work with as little as 10 µL cm−2of electrolyte. With this design the cell has a high energy density of 450 Wh kg−1, a lifetime of more than 400 cycles, and the possibility of low cost, by use of abundant and eco-friendly materials.
  •  
2.
  • Agostini, Marco, 1987, et al. (författare)
  • Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorine-free Electrolyte and Nanostructured S/C Composite
  • 2018
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 11:17, s. 2981-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new Li–S cell concept based on an optimized F-free catholyte solution and a high loading nanostructured C/S composite cathode. The Li2S8present in the electrolyte ensures both buffering against active material dissolution and Li+conduction. The high S loading is obtained by confining elemental S (≈80 %) in the pores of a highly ordered mesopores carbon (CMK3). With this concept we demonstrate stabilization of a high energy density and excellent cycling performance over 500 cycles. This Li–S cell has a specific capacity that reaches over 1000 mA h g−1, with an overall S loading of 3.6 mg cm−2and low electrolyte volume (i.e., 10 μL cm−2), resulting in a practical energy density of 365 Wh kg−1. The Li–S system proposed thus meets the requirements for large scale energy storage systems and is expected to be environmentally friendly and have lower cost compared with the commercial Li-ion battery thanks to the removal of both Co and F from the overall formulation.
  •  
3.
  • Lee, Suyeong, et al. (författare)
  • High-Energy and Long-Lifespan Potassium–Sulfur Batteries Enabled by Concentrated Electrolyte
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 32:46
  • Tidskriftsartikel (refereegranskat)abstract
    • Potassium–sulfur (K–S) batteries are emerging as low-cost and high-capacity energy-storage technology. However, conventional K–S batteries suffer from two critical issues that have not yet been successfully resolved: the dissolution of potassium polysulfides (KPS) into the liquid electrolyte and the formation of K dendrites on the K metal anode, which lead to inadequate cycling efficiencies with a low reversible capacity. Herein, a high-capacity and long cycle-life K–S battery consisting of a highly concentrated electrolyte (HCE) (4.34 mol kg−1 potassium bis(fluorosulfonyl)imide in a 1,2-Dimethoxyethane) and a sulfurized polyacrylonitrile (SPAN) cathode is presented The application of a HCE efficiently suppresses the dendritic growth of K, as evidenced by operando optical imaging and phase field modeling, owing to the reduced K-ion depletion on the electrode surface and a uniform Faradaic current density over the K metal anode surface. Additionally, because S is covalently bonded to the C backbone of PAN in the SPAN structure, the SPAN cathode inhibits the dissolution of KPS. These features generate synergy that the proposed K–S battery can provide a practical areal capacity of 2.5 mAh cm−2 and unprecedented lifetimes with high Coulombic efficiencies over 700 cycles.
  •  
4.
  • Lee, Suyeong, et al. (författare)
  • Recent developments and future challenges in designing rechargeable potassium-sulfur and potassium-selenium batteries
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of chalcogenide elements, such as sulfur (S) and selenium (Se), as cathode materials in rechargeable lithium (Li) and sodium (Na) batteries has been extensively investigated. Similar to Li and Na systems, rechargeable potassium-sulfur (K-S) and potassium-selenium (K-Se) batteries have recently attracted substantial interest because of the abundance of K and low associated costs. However, K-S and K-Se battery technologies are in their infancy because K possesses overactive chemical properties compared to Li and Na and the electrochemical mechanisms of such batteries are not fully understood. This paper summarizes current research trends and challenges with regard to K-S and K-Se batteries and reviews the associated fundamental science, key technological developments, and scientific challenges to evaluate the potential use of these batteries and finally determine effective pathways for their practical development.
  •  
5.
  • Sun, Jinhua, 1987, et al. (författare)
  • Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium‐sulfur (Li‐S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state‐of‐the‐art lithium‐ion (Li‐ion) batteries owing to their high energy density, low cost, and eco‐compatibility. However, the migration of high‐order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface. In this study, the grafting of versatile functional groups with designable properties (e.g., catalytic effects) directly on the surface of the carbon host is proposed to enhance interactions with LiPs. As model systems, benzene groups containing N/O and S/O atoms are vertically grafted and uniformly distributed on the surface of expanded reduced graphene oxide, fostering a stable interface between the cathode and LiPs. The combination of experiments and density functional theory calculations demonstrate improvements in chemical interactions between graphene and LiPs, with an enhancement in the electrochemical kinetics, power, and energy densities.
  •  
6.
  • Xu, Xieyu, et al. (författare)
  • Role of Li-Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode
  • 2020
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 10:44
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of lithium metal as an anode material for next generation high energy-density batteries has to overcome the major bottleneck that is the seemingly unavoidable growth of Li dendrites caused by non-uniform electrodeposition on the electrode surface. This problem must be addressed by clarifying the detailed mechanism. In this work the mass-transfer of Li-ions is investigated, a key process controlling the electrochemical reaction. By a phase field modeling approach, the Li-ion concentration and the electric fields are visualized to reveal the role of three key experimental parameters, operating temperature, Li-salt concentration in electrolyte, and applied current density, on the microstructure of deposited Li. It is shown that a rapid depletion of Li-ions on electrode surface, induced by, e.g., low operating temperature, diluted electrolyte and a high applied current density, is the underlying driving force for non-uniform electrodeposition of Li. Thus, a viable route to realize a dendrite-free Li plating process would be to mitigate the depletion of Li-ions on the electrode surface. The methodology and results in this work may boost the practical applicability of Li anodes in Li metal batteries and other battery systems using metal anodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy