SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) srt2:(2010-2014);pers:(Jacobsson Per 1958)"

Sökning: WFRF:(Matic Aleksandar 1968) > (2010-2014) > Jacobsson Per 1958

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • 2,3,6,7,10,11-Hexamethoxytriphenylene (HMTP): A new organic cathode material for lithium batteries
  • 2012
  • Ingår i: Electrochemistry Communications. - : Elsevier BV. - 1388-2481. ; 21:1, s. 50-53
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a new organic cathode material for rechargeable lithium battery applications: 2,3,6,7,10,11-hexamethoxytriphenylene (HMTP). HMTP is composed of six methoxy functional groups substituted onto a central triphenylene moiety. The cell, incorporating 40 wt.% of organic cathode material, exhibits full specific capacity at current densities up to 3 C. The main advantage of HMTP as organic cathode material lies in a stable cell performance and negligible self discharge, even though the capacity is lower, similar to 66 mAh/g, compared to other organic cathode materials. Cells with the HMTP cathode showed >95% retention of the initial discharge capacity after 50 cycles at 1 C and self-discharge was not observed during a full month of open circuit voltage measurements. The latter is due to the fact that the nature of the HMTP radical is fundamentally different from other organic cathode materials' radicals.
  •  
2.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • An Imidazolium based ionic liquid electrolyte for lithium batteries
  • 2010
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 195:22, s. 7639-7643
  • Tidskriftsartikel (refereegranskat)abstract
    • An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (1.2 × 10−3 S cm−1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li+ charge carriers should be higher than in electrolytes based on Py14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (146 mAh g−1).
  •  
3.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries
  • 2013
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 224:15 Feb. 2013, s. 93-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(vinylidene difluoride-co-hexafluoropropylene) (PVdF-HFP) membrane was prepared by electrospinning. The membranes served as host matrices for the preparation of ionic liquid-based polymer electrolytes (ILPEs) by activation with non-volatile, highly thermally stable, and safe room temperature ionic liquid (RTIL) electrolytes; N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). In this work, the first combination of electrospun PVdF-HFP fiber polymer host and pyrrolidinium-based ionic electrolyte was employed for highly stable lithium batteries. The ILPE exhibited low Li+-TFSI coordination, low crystallinity, high thermal stability, high electrochemical stability, and high ionic conductivity with a maximum of 1.1 x 10(-4) S cm(-1) at 0 degrees C. The ILPE exhibited good compatibility with a LiFePO4 electrode on storage and good charge-discharge performance in Li/ILPE/LiFePO4!
  •  
4.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Electrochemical properties of a full cell of lithium iron phosphate cathode using thin amorphous silicon anode
  • 2014
  • Ingår i: Solid State Ionics. - : Elsevier BV. - 0167-2738. ; 268:Part B, s. 256-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-coated lithium iron phosphate (LiFePO4/C) with uniform carbon coating was synthesized by a mechanical activation method. Silicon negative electrode material was obtained in the form of thin films of amorphous silicon on a Cu foil substrate by vertical deposition technique. The electrochemical performance of the full cell, LiFePO4/C-Si, was tested with 1 M LiPF6 in EC/DMC at 0.5 and 1 C-rates. The cell exhibited an initial discharge capacity of 143.9 mAh g(-1) at 0.5 C-rate at room temperature. A reasonably good cycling performance under a high current density of 1 C-rate could be obtained with the full cell.
  •  
5.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries
  • 2011
  • Ingår i: Electrochemistry Communications. - : Elsevier BV. - 1388-2481. ; 13:10, s. 1105-1108
  • Tidskriftsartikel (refereegranskat)abstract
    • A porous well defined LiMnPO(4) cathode material is synthesized by a sol-gel method. The electrochemical performance of the cathode material is evaluated in a cell with an ionic liquid-based polymer electrolyte (0.5 M LITFSI in EMlmTFSI) and a lithium metal electrode. The results are compared to a cell with a traditional organic carbonate-based electrolyte (1 M LiPF(6) in EC/DMC). The cell with the ionic liquid-based polymer electrolyte presents an enhanced electrochemical intercalation performance of lithium ions, a high electrochemical stability window of 5 V, and an excellent cycling ability as compared with the organic based counterpart. Furthermore, the ionic liquid-based polymer gel electrolyte effectively prevents the dissolution of manganese - otherwise a common problem.
  •  
6.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Improving the stability of an organic battery with an ionic liquid-based plymer electrolyte
  • 2012
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 2:26, s. 9795-9797
  • Tidskriftsartikel (refereegranskat)abstract
    • A gel polymer electrolyte based on the ionic liquid {N-butyl-N-methyl-pyrrolidiniumbis(trifluoromethanesulfonyl) imide (Py14TFSI) and lithium bis(trifluoromethanesulfony)imide (LiTFSI)} is shown to prevent the dissolution from an organic electrode. The composite cell shows high energy efficiency although poor cycle stability is exhibited at very high current density (10 C-rate).
  •  
7.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Nano-fibrous polymer films for organic rechargeable batteries
  • 2013
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 1:7, s. 2426-2430
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a nano-fibrous polymer (NFP) film, fabricated by electrospinning poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA), as a key component in high performance organic batteries. The new strategy with a NFP film enables extraordinary rate capability and excellent cyclability, due to its special morphology. Moreover, the NFP film enhances the flexibility of the electrode at a low cost and prevents dissolution of PTMA into the electrolyte.
  •  
8.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Preparation and application of TEMPO-based di-radical organic electrode with ionic liquid-based polymer electrolyte
  • 2012
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 2:27, s. 10394-10399
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we report the synthesis and use of new organic materials, TEMPO di-radical [1,3-bis(4-(2,2,6,6,-tetramethyl-1-oxyl-4-piperidoxyl)butyl) imidazolium trifluorosulfonate]. Two cells were prepared with Li metal anode and the TEMPO di-radical based cathode with a microporous polymer electrolyte [1-butyl-3-methyl imidazolium bis(trifluoromethane sulfonyl) imide (BMImTFSI) in 0.5 M LiTFSI, and in 1 M LiPF6 in ethylene carbonate/dimethyl carbonate (EC/DMC)] hosted in electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) membrane. The nature of the solvent was not found to affect the basic redox reaction behavior of TEMPO. The anodic and cathodic peaks were obtained at almost the same position and with some difference in the separation of peaks. The presence of BMImTFSI significantly affects the electrochemical performance of the battery as the cell having this RTIL exhibited far better electrochemical performance with 100% utilization of the active material and reasonably good cycling performance up to 200 cycles. We believe that this composite cell will contribute to organic green rechargeable batteries, although the cell is not fully organic composite.
  •  
9.
  •  
10.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes
  • 2012
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428. ; 22:30, s. 15045-15049
  • Tidskriftsartikel (refereegranskat)abstract
    • A thin flexible polypyrrole-lithium iron phosphate (PPy-LiFePO4) based cathode has been fabricated. A slurry containing carbon black, a binder and the active material prepared by direct polymerization of pyrrole on the surface of LiFePO4 (LFP) was spread on an Al/carbon film substrate by the doctor blade method. Transmission electron micrographs reveal that PPy nanoparticles form a web like structure over the surface of LFP particles. After doping with lithium ions the PPy network becomes conducting. When evaluated as a cathode of 180 mu m thickness together with a gel polymer electrolyte and a lithium anode, the charge-discharge performance reveals that the electrochemical properties of LFP are influenced to a considerable extent by the PPy. The cells show high initial discharge capacities of 135 and 110 mA h g(-1) for 0.041 (C/10) and 0.21 (C/2) mA cm(-2), respectively, and high active material utilization. Furthermore the cells exhibit stable cycle properties even at 0.21 mA cm(-2) with a low capacity fade per cycle (similar to 0.3%).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy