SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) srt2:(2015-2019);hsvcat:1"

Sökning: WFRF:(Matic Aleksandar 1968) > (2015-2019) > Naturvetenskap

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Iselau, Frida, 1979, et al. (författare)
  • Competitive adsorption of amylopectin and amylose on cationic nanoparticles: a study on the aggregation mechanism
  • 2016
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 12:14, s. 3388-3397
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the interactions between cationic nanoparticles and anionic starch, where the starch was composed of 20 wt% of amylose, a linear polymer, and 80 wt% of amylopectin, a branched polymer. The mechanism of aggregation was investigated by scattering techniques. It was found that the cationic particles formed large aggregates with the starch as a result of selective adsorption of the amylopectin. Amylose did not participate significantly in the aggregate formation even when the charge ratio of starch to particles was <1. For starch to particle ratio 41 stabilization was recovered mostly due to the large hindrance brought about by the highly branched amylopectin. This results in a shift of the stabilization mechanism from electrostatic to electrosteric. The internal structure of the aggregates was composed of primary particles with starch coils adsorbed on the surface. This information supports the proposed aggregation mechanism, which is based on adsorption of the negatively charged starch in patches on the positively charged nanoparticles causing attractive interaction between the particles.
  •  
2.
  • Xiong, Shizhao, 1985, et al. (författare)
  • Role of organic solvent addition to ionic liquid electrolytes for lithium–sulphur batteries
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069.
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the role of the addition of an organic solvent to an ionic liquid electrolyte for the performance of lithium–sulphur (Li–S) batteries. We find that with a mixed electrolyte, formed by adding 10 wt% 1,3-dioxolane (DIOX) to an ionic liquid, the capacity of a Li–S cell is more than doubled, the rate capability and the cycling performance considerably improved, compared to a cell utilizing a neat ionic liquid electrolyte. The improved performance can be correlated with an enhanced ion transport, evidenced by an increased ionic conductivity and higher limiting current density, directly related to a decrease in viscosity and glass transition temperature of the mixed electrolytes. We show that this in turn is linked to a change in the local environment of the Li-ions where the organic solvent is incorporated in the coordination shell. In addition we show that the mixed electrolytes have a considerably higher thermal stability, in particular a dramatically increased flash point, and improved low temperature properties with respect to a conventional organic solvent based electrolyte currently used for Li–S batteries.
  •  
3.
  • Martins, Murillo L., et al. (författare)
  • Raman and Infrared spectroscopies and X-ray diffraction data on bupivacaine and ropivacaine complexed with 2-hydroxypropyl−β−cyclodextrin
  • 2017
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 15, s. 25-29
  • Tidskriftsartikel (refereegranskat)abstract
    • The data presented in this article are related to the research article entitled “Probing the dynamics of complexed local anesthetics via neutron scattering spectroscopy and DFT calculations (http://dx.doi.org/10.1016/j.ijpharm.2017.03.051)” (Martins et al., 2017) [1]. This work shows the molecular and structural behavior of the local anesthetics (LAs) bupivacaine (BVC, C18H28N2O) and ropivacaine (RVC, C17H26N2O) before and after complexation with the water-soluble oligosaccharide 2-hydroxypropyl???cyclodextrin (HP-?-CD).
  •  
4.
  • Agostini, Marco, 1987, et al. (författare)
  • Designing a Safe Electrolyte Enabling Long‐Life Li/S Batteries
  • 2019
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 12:18, s. 4176-4184
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium–sulfur (Li/S) batteries suffer from “shuttle” reactions in which soluble polysulfide species continuously migrate to and from the Li metal anode. As a consequence, the loss of active material and reactions at the surface of Li limit the practical applications of Li/S batteries. LiNO3 has been proposed as an electrolyte additive to reduce the shuttle reactions by aiding the formation of a stable solid electrolyte interphase (SEI) at the Li metal, limiting polysulfide shuttling. However, LiNO3 is continuously consumed during cycling, especially at low current rates. Therefore, the Li/S battery cycle life is limited by the LiNO3 concentration in the electrolyte. In this work, an ionic liquid (IL) [N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethylsulfonyl)imide] was used as an additive to enable longer cycle life of Li/S batteries. By tuning the IL concentration, an enhanced stability of the SEI and lower flammability of the solutions were demonstrated, that is, higher safety of the battery. The Li/S cell built with a high sulfur mass loading (4 mg cm−2) and containing the IL-based electrolyte demonstrated a stable capacity of 600 mAh g−1 for more than double the number of cycles of a cell containing LiNO3 additive.
  •  
5.
  • Iselau, Frida, 1979, et al. (författare)
  • Formation and relaxation kinetics of starch-particle complexes
  • 2016
  • Ingår i: Soft Matter. - 1744-6848 .- 1744-683X. ; 12:47, s. 9509-9519
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation and relaxation kinetics of starch-particle complexes were investigated in this study. The combination of cationic nanoparticles in suspension and anionic starch in solution gave rise to aggregate formation which was studied by dynamic light scattering, revealing the initial adsorption of the starch molecules on the particle surface. By examining the stability ratio, W, it was found that even in the most destabilized state, i.e. at charge neutralization, the starch chains had induced steric stabilization to the system. At higher particle and starch concentrations relaxation of the aggregates could be seen, as monitored by a decrease in turbidity with time. This relaxation was evaluated by fitting the data to the Kohlrausch-Williams-Watts function. It was found that irrespective of the starch to particle charge ratio the relaxation time was similar. Moreover, a molecular weight dependence on the relaxation time was found, as well as a more pronounced initial aggregated state for the higher molecular weight starch. This initial aggregate state could be due to bridging flocculation. With time, as the starch chains have relaxed into a final conformation on the particle surface, bridging will be less important and is gradually replaced by patches that will cause patchwise flocculation. After an equilibration time no molecular weight dependence on aggregation could be seen, which confirms the patchwise flocculation mechanism.
  •  
6.
  • Senf, Deborah, et al. (författare)
  • Tailormade Polysaccharides with Defined Branching Patterns: Enzymatic Polymerization of Arabinoxylan Oligosaccharides
  • 2018
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 57:37, s. 11987-11992
  • Tidskriftsartikel (refereegranskat)abstract
    • The heterogeneous nature of non-cellulosic polysaccharides, such as arabinoxylan, makes it difficult to correlate molecular structure with macroscopic properties. To study the impact of specific structural features of the polysaccharides on crystallinity or affinity to other cell wall components, collections of polysaccharides with defined repeating units are required. Herein, a chemoenzymatic approach to artificial arabinoxylan polysaccharides with systematically altered branching patterns is described. The polysaccharides were obtained by glycosynthase-catalyzed polymerization of glycosyl fluorides derived from arabinoxylan oligosaccharides. X-ray diffraction and adsorption experiments on cellulosic surfaces revealed that the physicochemical properties of the synthetic polysaccharides strongly depend on the specific nature of their substitution patterns. The artificial polysaccharides allow structure–property relationship studies that are not accessible by other means.
  •  
7.
  • Yaghini, Negin, 1976, et al. (författare)
  • Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions
  • 2017
  • Ingår i: Physical Chemistry Chemical Physics. - 1463-9084 .- 1463-9076. ; 19:8, s. 5727-5736
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, C6C1ImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.e. in the nano-sized pore domains) and observed in the whole temperature window investigated (i.e. from −10 to 140 °C). Solid-state NMR, diffusion NMR and dielectric spectroscopy concomitantly demonstrate this effect. The origin of this enhancement is explained in terms of weaker intermolecular interactions and a consequent flipped-ion effect at the silica interface strongly supported by 2D solid-state NMR experiments. The possibility to significantly enhance the ionic mobility by controlling the nature of surface interactions is extremely important in the field of materials science and highlights these structurally tunable gels as promising solid-like electrolytes for use in energy relevant devices. These include, but are not limited to, Li-ion batteries and proton exchange membrane (PEM) fuel cells.
  •  
8.
  • Agostini, Marco, 1987, et al. (författare)
  • Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:40, s. 34140-34146
  • Tidskriftsartikel (refereegranskat)abstract
    • We have designed a self-standing anode built-up from highly conductive 3D-sponged nanofibers, that is, with no current collectors, binders, or additional conductive agents. The small diameter of the fibers combined with an internal spongelike porosity results in short distances for lithium-ion diffusion and 3D pathways that facilitate the electronic conduction. Moreover, functional groups at the fiber surfaces lead to the formation of a stable solid-electrolyte interphase. We demonstrate that this anode enables the operation of Li-cells at specific currents as high as 20 A g-1 (approx. 50C) with excellent cycling stability and an energy density which is >50% higher than what is obtained with a commercial graphite anode.
  •  
9.
  • Agostini, Marco, 1987, et al. (författare)
  • Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density
  • 2018
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 8:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfur electrodes confined in an inert carbon matrix show practical limitations and concerns related to low cathode density. As a result, these electrodes require a large amount of electrolyte, normally three times more than the volume used in commercial Li-ion batteries. Herein, a high-energy and high-performance lithium–sulfur battery concept, designed to achieve high practical capacity with minimum volume of electrolyte is proposed. It is based on deposition of polysulfide species on a self-standing and highly conductive carbon nanofiber network, thus eliminating the need for a binder and current collector, resulting in high active material loading. The fiber network has a functionalized surface with the presence of polar oxygen groups, with the aim to prevent polysulfide migration to the lithium anode during the electrochemical process, by the formation of S–O species. Owing to the high sulfur loading (6 mg cm−2) and a reduced free volume of the sulfide/fiber electrode, the Li–S cell is designed to work with as little as 10 µL cm−2of electrolyte. With this design the cell has a high energy density of 450 Wh kg−1, a lifetime of more than 400 cycles, and the possibility of low cost, by use of abundant and eco-friendly materials.
  •  
10.
  • Cavallo, Carmen, 1986, et al. (författare)
  • A free-standing reduced graphene oxide aerogel as supporting electrode in a fluorine-free Li2S8 catholyte Li-S battery
  • 2019
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 416, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a novel, simple, and environmentally benign synthesis route for a free-standing reduced graphene oxide (r-GO) aerogel and its application as supporting electrode for the electrochemical redox reaction of sulphur in a catholyte-based lithium-sulphur battery. A mesoporous matrix is formed by a layers of r-GO, providing sites for electrochemical reactions and a highly conducting pathway for electrons. The highly porous structure is easily infiltrated by a catholyte solution providing a homogeneous distribution of the sulphur active material in the conductive graphene matrix and ensuring efficient electrochemical reactions. This is demonstrated by a high capacity, 3.4 mAh cm−2, at high mass loading, 3.2 mg cm−2 of sulphur in the cathode and in total the sulphur loading in the Li-S cell is even double (6.4 mg cm−2). Additionally, the presence of oxygen groups in the r-GO aerogel structure stabilizes the cycling performance and the Li-S cell with the fluorine free catholyte shows a capacity retention of 85% after 350 cycles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45
Typ av publikation
tidskriftsartikel (44)
konferensbidrag (1)
Typ av innehåll
refereegranskat (45)
Författare/redaktör
Matic, Aleksandar, 1 ... (44)
Agostini, Marco, 198 ... (14)
Lim, Du Hyun, 1983 (9)
Aguilera Medina, Lui ... (7)
Brutti, Sergio (6)
Ahn, J. (5)
visa fler...
Thomsen, Peter, 1953 (4)
Sadd, Matthew, 1994 (4)
Palmquist, Anders, 1 ... (4)
Shah, Furqan A. (4)
Martinelli, Anna, 19 ... (3)
Johansson, Patrik, 1 ... (3)
Navarra, M.A. (3)
Croce, F. (3)
Xiong, Shizhao, 1985 (3)
Scheers, Johan, 1979 (3)
Phan Xuan, Tuan, 198 ... (3)
Bordes, Romain, 1981 (3)
Bordallo, Heloisa N. (3)
Nitze, Florian, 1981 ... (3)
Eckert, Juergen (3)
Haridas, Anupriya K. (3)
Müller, Christian, 1 ... (2)
Jacobsson, Per, 1958 (2)
Panero, S. (2)
Reale, P. (2)
Scrosati, Bruno (2)
Cavallo, Carmen, 198 ... (2)
Ahn, Jou Hyeon (2)
Hwang, Jang Yeon (2)
Xiong, Shizhao (2)
Heo, J. W. (2)
Panero, Stefania (2)
Labrador, Ana (2)
Karlsson, Maths, 197 ... (2)
Bellissent-Funel, Ma ... (2)
Gkourmpis, Thomas (2)
Palmqvist, Anders, 1 ... (2)
Holmberg, Krister, 1 ... (2)
Snis, Anders (2)
Lindberg, Simon, 198 ... (2)
Jacobsen, Henrik (2)
Yaghini, Negin, 1976 (2)
Gitsas, Antonis (2)
Manyala, Ncholu (2)
Cho, K. K. (2)
Iselau, Frida, 1979 (2)
Martin, Steve (2)
Imberti, S. (2)
Pitawala, Jagath, 19 ... (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (45)
Göteborgs universitet (4)
Lunds universitet (3)
RISE (2)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (45)
Forskningsämne (UKÄ/SCB)
Teknik (20)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy