SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matos Maravi Pavel) "

Sökning: WFRF:(Matos Maravi Pavel)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Andermann, Tobias, et al. (författare)
  • A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project
  • 2020
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
  •  
3.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Conceptual and empirical advances in Neotropical biodiversity research
  • 2018
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 2018:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of "trans-disciplinary biogeography," which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow's ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.
  •  
4.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Madagascar's extraordinary biodiversity : Evolution, distribution, and use
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623, s. 962-
  • Tidskriftsartikel (refereegranskat)abstract
    • Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique " living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.
  •  
5.
  • Arias, M. C., et al. (författare)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 February 2013-31 March 2013
  • 2013
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 13:4, s. 760-762
  • Tidskriftsartikel (refereegranskat)abstract
    • This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.
  •  
6.
  • Bakker, F. T., et al. (författare)
  • The Global Museum: natural history collections and the future of evolutionary science and public education
  • 2020
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.
  •  
7.
  • Chazot, Nicolas, et al. (författare)
  • Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.
  •  
8.
  • Matos-Maraví, Pável, et al. (författare)
  • An ant genus-group (Prenolepis) illuminates the biogeography and drivers of insect diversification in the Indo-Pacific
  • 2018
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903. ; 123, s. 16-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodiversity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species diversity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation. Ancestral state reconstructions of the ants' ecological preferences, and diversification rates were estimated for selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred since at least 20-25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca. 10-20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid orogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification and widespread distribution across the Indo-Pacific.
  •  
9.
  • Matos-Maraví, Pável, et al. (författare)
  • Biodiversity seen through the perspective of insects : 10 simple rules on methodological choices and experimental design for genomic studies
  • 2019
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.
  •  
10.
  • Matos-Maraví, Pável, et al. (författare)
  • Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae)
  • 2021
  • Ingår i: Biological Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4066 .- 1095-8312. ; 133:3, s. 704-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional species diversity is explained ultimately by speciation, extinction and dispersal. Here, we estimate dispersal and speciation rates of Neotropical butterflies to propose an explanation for the distribution and diversity of extant species. We focused on the tribe Brassolini (owl butterflies and allies), a Neotropical group that comprises 17 genera and 108 species, most of them endemic to rainforest biomes. We inferred a robust species tree using the multispecies coalescent framework and a dataset including molecular and morphological characters. This formed the basis for three changes in Brassolini classification: (1) Naropina syn. nov. is subsumed within Brassolina; (2) Aponarope syn. nov. is subsumed within Narope; and (3) Selenophanes orgetorix comb. nov. is reassigned from Catoblepia to Selenophanes. By applying biogeographical stochastic mapping, we found contrasting species diversification and dispersal dynamics across rainforest biomes, which might be explained, in part, by the geological and environmental history of each bioregion. Our results revealed a mosaic of biome-specific evolutionary histories within the Neotropics, where butterfly species have diversified rapidly (cradles: Mesoamerica), have accumulated gradually (museums: Atlantic Forest) or have diversified and accumulated alternately (Amazonia). Our study contributes evidence from a major butterfly lineage that the Neotropics are a museum and a cradle of species diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Antonelli, Alexandre ... (6)
Wahlberg, Niklas (5)
Larsson, Ellen, 1961 (1)
Ritter, Camila (1)
Muller, J. (1)
Olsson, Urban, 1954 (1)
visa fler...
Born, Celine (1)
Gonzalez, Clementina (1)
Gutierrez-Rodriguez, ... (1)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
Farrell, Katharine N ... (1)
Antonelli, A (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Aduse-Poku, Kwaku (1)
Lohman, David J. (1)
Kodandaramaiah, Ulla ... (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Lundin, Kennet (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Nylin, Sören (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Wheat, Christopher W ... (1)
Vajda, Vivi (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Olsson, Urban (1)
Irestedt, Martin (1)
Gelang, M. (1)
Ericson, Per G P (1)
Oxelman, Bengt, 1958 (1)
Hortal, Joaquin (1)
visa färre...
Lärosäte
Göteborgs universitet (9)
Lunds universitet (7)
Chalmers tekniska högskola (3)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Mittuniversitetet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Samhällsvetenskap (3)
Teknik (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy