Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mattingsdal Morten) "

Sökning: WFRF:(Mattingsdal Morten)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - : Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
  • Humphreys, Keith, et al. (författare)
  • The Genetic Structure of the Swedish Population
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F-st) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.
  • Marshall, Christian R., et al. (författare)
  • Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 49:1, s. 27-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 x 10(-15)), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 x 10(-6)). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 x 10(-11)) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 x 10(-5)). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  • Mattingsdal, Morten, et al. (författare)
  • Pathway analysis of genetic markers associated with a functional MRI faces paradigm implicates polymorphisms in calcium responsive pathways
  • 2013
  • Ingår i: NeuroImage. - 1053-8119 .- 1095-9572. ; 70, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Several lines of evidence suggest that common polygenic variation influences brain function in humans. Combining high-density genetic markers with brain imaging techniques is constricted by the practicalities of collecting sufficiently large brain imaging samples. Pathway analysis promises to leverage knowledge on function of genes to detect recurring signals of moderate effect. We adapt this approach, exploiting the deep information collected on brain function by fMRI methods, to identify molecular pathways containing genetic variants which influence brain activation during a commonly applied experiment based on a face matching task (n=246) which was developed to study neural processing of faces displaying negative emotions. Genetic markers moderately associated (p<10(-4)) with whole brain activation phenotypes constructed by applying principal components to contrast maps, were tested for pathway enrichment using permutation based methods. The most significant pathways are related to post NMDA receptor activation events, driven by genetic variants in calcium/calmodulin-dependent protein kinase II (CAMK2G, CAMK2D) and a calcium-regulated nucleotide exchange factor (RASGRF2) in which all are activated by intracellular calcium/calmodulin. The most significant effect of the combined polygenic model were localized to the left inferior frontal gyrus (p=1.03 × 10(-9)), a region primarily involved in semantic processing but also involved in processing negative emotions. These findings suggest that pathway analysis of GWAS results derived from principal component analysis of fMRI data is a promising method, to our knowledge, not previously described.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy