SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mayans Sofia) "

Sökning: WFRF:(Mayans Sofia)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fransen-Pettersson, N., et al. (författare)
  • A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis
  • 2016
  • Ingår i: Plos One. - : Public Library of Science. - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.
  •  
2.
  • Backstrom, D., et al. (författare)
  • Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson's disease
  • 2018
  • Ingår i: Acta Neurologica Scandinavica. - : John Wiley & Sons. - 0001-6314 .- 1600-0404. ; 137:1, s. 91-98
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesCognitive decline is common in Parkinson's disease (PD), but the underlying mechanisms for this complication are incompletely understood. Genotypes affecting dopamine transmission may be of importance. This study investigates whether genotypes associated with reduced prefrontal dopaminergic tone and/or reduced dopamine D2-receptor availability (Catechol-O-methyltransferase [COMT] Val(158)Met genotype and DRD2 (CT)-T-957 genotype) affect the development of cognitive deficits in PD. Materials and methodsOne hundred and 34 patients with idiopathic PD, participating in a regional, population-based study of incident parkinsonism, underwent genotyping. After extensive baseline investigations (including imaging and biomarker analyses), the patients were followed prospectively during 6-10 years with neuropsychological evaluations, covering six cognitive domains. Cognitive decline (defined as the incidence of either Parkinson's disease mild cognitive impairment [PD-MCI] or dementia [PDD], diagnosed according to published criteria and blinded to genotype) was studied as the primary outcome. ResultsBoth genotypes affected cognition, as shown by Cox proportional hazards models. While the COMT(158)Val/Val genotype conferred an increased risk of mild cognitive impairment in patients with normal cognition at baseline (hazard ratio: 2.13, P=.023), the DRD2(957)T/T genotype conferred an overall increased risk of PD dementia (hazard ratio: 3.22, P<.001). The poorer cognitive performance in DRD2(957)T/T carriers with PD occurred mainly in episodic memory and attention. ConclusionsThe results favor the hypothesis that dopamine deficiency in PD not only relate to mild cognitive deficits in frontostriatal functions, but also to a decline in memory and attention. This could indicate that dopamine deficiency impairs a wide network of brain areas.
  •  
3.
  • Parsa, Roham, et al. (författare)
  • Adoptive transfer of immunomodulatory M2 Macrophages prevents type 1 Diabetes in NOD Mice
  • 2012
  • Ingår i: Diabetes. - : American diabetes Association. - 0012-1797 .- 1939-327X. ; 61:11, s. 2881-2892
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophages are multifunctional immune cells that may either drive or modulate disease pathogenesis depending on their activation phenotype. Autoimmune type 1 diabetes (T1D) is a chronic proinflammatory condition characterized by unresolved destruction of pancreatic islets. Adoptive cell transfer of macrophages with immunosuppressive properties represents a novel immunotherapy for treatment of such chronic autoimmune diseases. We used a panel of cytokines and other stimuli to discern the most effective regimen for in vitro induction of immunosuppressive macrophages (M2r) and determined interleukin (IL)-4/IL-10/transforming growth factor-beta (TGF-beta) to be optimal. M2r cells expressed programmed cell death 1 ligand-2, fragment crystallizable region gamma receptor IIlb, IL-10, and TGF-beta, had a potent deactivating effect on proinflammatory lipopolysaccharide/interferon-gamma-stimulated macrophages, and significantly suppressed T-cell proliferation. Clinical therapeutic efficacy was assessed after adoptive transfer in NOD T1D mice, and after a single transfer of M2r macrophages, >80% of treated NOD mice were protected against T1D for at least 3 months, even when transfer was conducted just prior to clinical onset. Fluorescent imaging analyses revealed that adoptively transferred M2r macrophages specifically homed to the inflamed pancreas, promoting 3-cell survival. We suggest that M2r macrophage therapy represents a novel intervention that stops ongoing autoimmune T1D and may have relevance in a clinical setting. Diabetes 61:2881-2892, 2012
  •  
4.
  • Alanentalo, Tomas, et al. (författare)
  • Quantification and 3-D imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:7, s. 1756-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this study was to refine the information regarding the quantitative and spatial dynamics of infiltrating lymphocytes and remaining beta-cell volume during the progression of type 1 diabetes in the NOD mouse model of the disease.Research design and methods: Using an ex vivo technique, optical projection tomography (OPT), we quantified and assessed the 3D spatial development and progression of insulitis and beta-cell destruction in pancreas from diabetes prone NOD and non-diabetes prone congenic NOD.H-2b mice between 3 and 16 weeks of age.Results: Together with results showing the spatial dynamics of the insulitis process we provide data of beta-cell volume distributions down to the level of the individual islets and throughout the pancreas during the development and progression of type 1 diabetes. Our data provide evidence for a compensatory growth potential of the larger insulin(+) islets during the later stages of the disease around the time point for development of clinical diabetes. This is in contrast to smaller islets, which appear less resistant to the autoimmune attack. We also provide new information on the spatial dynamics of the insulitis process itself, including its apparently random distribution at onset, the local variations during its further development, and the formation of structures resembling tertiary lymphoid organs at later phases of insulitis progression.Conclusions: Our data provides a powerful tool for phenotypic analysis of genetic and environmental effects on type 1 diabetes etiology as well as for evaluating the potential effect of therapeutic regimes.
  •  
5.
  • Bäckström, David, et al. (författare)
  • PITX3 genotype and risk of dementia in Parkinson's disease : A population-based study
  • 2017
  • Ingår i: Journal of the Neurological Sciences. - : ELSEVIER SCIENCE BV. - 0022-510X .- 1878-5883. ; 381, s. 278-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia is a devastating manifestation of Parkinson's disease (PD). This study investigates whether a common polymorphism in the PITX3 gene (rs2281983), which is of importance for the function of dopaminergic neurons, affects the risk of developing dementia in PD and whether it affects dopamine transporter (DAT) uptake. We PITX3 genotyped 133 patients with new-onset, idiopathic PD, participating in a population-based study in Sweden. Patients were followed prospectively during 6-11 years with extensive investigations, including neuropsychology and DAT-imaging with I-123 FP-CIT. The primary outcome was the incidence of PD dementia (PDD), diagnosed according to published criteria, studied by the Kaplan-Meier method and Cox proportional hazards. Performance in individual cognitive domains, the incidence of visual hallucinations, disease progression and striatal DAT uptake on imaging was also investigated. PD patients carrying the PITX3 C allele had an increased risk of developing PDD (hazard ratio: 2.87, 95% CI: 1.42-5.81, p = 0.003), compared to the PD patients homozygous for the T-allele. Furthermore, the PITX3 C allele carriers with PD had a poorer cognitive performance in the visuospatial domain (p < 0.001) and a higher incidence of visual hallucinations. A trend towards a lower striatal DAT uptake in the PITX3 C allele carriers was suggested, but could not be confirmed. Our results show that a common polymorphism in the PITX3 gene affects the risk of developing PDD and visuospatial dysfunction in idiopathic PD. If validated, these findings can provide new insights into the neurobiology and genetics of non-motor symptoms in PD.
  •  
6.
  •  
7.
  •  
8.
  • Holmberg, Dan, et al. (författare)
  • Association of CD247 (CD3ζ) gene polymorphisms with T1D and AITD in the population of northern Sweden
  • 2016
  • Ingår i: BMC Medical Genetics. - : BioMed Central (BMC). - 1471-2350. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: T1D and AITD are autoimmune disorders commonly occurring in the same family and even in the same individual. The genetic contribution to these disorders is complex making uncovering of susceptibility genes very challenging. The general aim of this study was to identify loci and genes contributing to T1D/AITD susceptibility. Our strategy was to perform linkage and association studies in the relatively genetically homogenous population of northern Sweden. We performed a GWLS to find genomic regions linked to T1D/AITD in families from northern Sweden and we performed an association study in the families to test for association between T1D/AITD and variants in previously published candidate genes as well as a novel candidate gene, CD247. Methods: DNA prepared from 459 individuals was used to perform a linkage and an association study. The ABI PRISM Linkage Mapping Set v2.5MD10 was employed for an initial 10-cM GWLS, and additional markers were added for fine mapping. Merlin was used for linkage calculations. For the association analysis, a GoldenGate Custom Panel from Illumina containing 79 SNPs of interest was used and FBAT was used for association calculations. Results: Our study revealed linkage to two previously identified chromosomal regions, 4q25 and 6p22, as well as to a novel chromosomal region, 1q23. The association study replicated association to PTPN22, HLA-DRB1, INS, IFIH1, CTLA4 and C12orf30. Evidence in favor of association was also found for SNPs in the novel susceptibility gene CD247. Conclusions: Several risk loci for T1D/AITD identified in published association studies were replicated in a family material, of modest size, from northern Sweden. This provides evidence that these loci confer disease susceptibility in this population and emphasizes that small to intermediate sized family studies in this population can be used in a cost-effective manner for the search of genes involved in complex diseases. The linkage study revealed a chromosomal region in which a novel T1D/AITD susceptibility gene, CD247, is located. The association study showed association between T1D/AITD and several variants in this gene. These results suggests that common susceptibility genes act in concert with variants of CD247 to generate genetic risk for T1D/AITD in this population.
  •  
9.
  • Kalis, Martins, et al. (författare)
  • Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mature microRNAs (miRNAs), derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting β-cells, we have generated mice with a β-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre(+/-) Dicer1(Δ/wt)), RIP-Cre(+/-)Dicer1(flox/flox) mice (RIP-Cre Dicer1(Δ/Δ)) developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased β-cell mass, reduced numbers of granules within the β-cells and reduced granule docking in adult RIP-Cre Dicer1(Δ/Δ) mice. β-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal β-cell development as 2-week old RIP-Cre Dicer1(Δ/Δ) mice showed ultrastructurally normal β-cells and intact insulin secretion. In conclusion, we have demonstrated that a β-cell specific disruption of the miRNAs network, although allowing for apparently normal β-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development.
  •  
10.
  • Lundholm, Marie, 1974-, et al. (författare)
  • Defective induction of CTLA-4 in the NOD mouse is controlled by the NOD allele of Idd3/IL-2 and a novel locus (Ctex) telomeric on chromosome 1
  • 2006
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 55:2, s. 538-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytotoxic T-lymphocyte–associated antigen-4 (CTLA-4), or CD152, is a negative regulator of T-cell activation and has been shown to be associated with autoimmune diseases. Previous work has demonstrated a defect in the expression of this molecule in nonobese diabetic (NOD) mice upon anti-CD3 stimulation in vitro. Using a genetic approach we here demonstrate that a novel locus (Ctex) telomeric on chromosome 1 together with the Idd3 (Il-2) gene confers optimal CTLA-4 expression upon CD3 activation of T-cells. Based on these data, we provide a model for how gene interaction between Idd3 (IL-2), Ctex, and Idd5.1 (Ctla-4) could confer susceptibility to autoimmune diabetes in the NOD mouse. Additionally, we showed that the Ctex and the Idd3 regions do not influence inducible T-cell costimulator (ICOS) protein expression in NOD mice. Instead, as previously shown, higher ICOS levels in NOD mice appear to be controlled by gene(s) in the Idd5.1 region, possibly a polymorphism in the Icos gene itself.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy