SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McCarthy A) ;lar1:(oru)"

Sökning: WFRF:(McCarthy A) > Örebro universitet

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Romagnoni, A, et al. (författare)
  • Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10351-
  • Tidskriftsartikel (refereegranskat)abstract
    • Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
  •  
2.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Kooij, J. J. S., et al. (författare)
  • Updated European Consensus Statement on diagnosis and treatment of adult ADHD
  • 2019
  • Ingår i: European psychiatry. - : Cambridge University Press (CUP). - 0924-9338 .- 1778-3585. ; 56, s. 14-34
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAttention-deficit/hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that often persists into adulthood and old age. Yet ADHD is currently underdiagnosed and undertreated in many European countries, leading to chronicity of symptoms and impairment, due to lack of, or ineffective treatment, and higher costs of illness.MethodsThe European Network Adult ADHD and the Section for Neurodevelopmental Disorders Across the Lifespan (NDAL) of the European Psychiatric Association (EPA), aim to increase awareness and knowledge of adult ADHD in and outside Europe. This Updated European Consensus Statement aims to support clinicians with research evidence and clinical experience from 63 experts of European and other countries in which ADHD in adults is recognized and treated.ResultsBesides reviewing the latest research on prevalence, persistence, genetics and neurobiology of ADHD, three major questions are addressed: (1) What is the clinical picture of ADHD in adults? (2) How should ADHD be properly diagnosed in adults? (3) How should adult ADHDbe effectively treated?ConclusionsADHD often presents as a lifelong impairing condition. The stigma surrounding ADHD, mainly due to lack of knowledge, increases the suffering of patients. Education on the lifespan perspective, diagnostic assessment, and treatment of ADHD must increase for students of general and mental health, and for psychiatry professionals. Instruments for screening and diagnosis of ADHD in adults are available, as are effective evidence-based treatments for ADHD and its negative outcomes. More research is needed on gender differences, and in older adults with ADHD.
  •  
7.
  • Barker, Adam, et al. (författare)
  • Association of genetic loci with glucose levels in childhood and adolescence a meta-analysis of over 6,000 children
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:6, s. 1805-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. RESEARCH DESIGN AND METHODS-A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9-16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. RESULTS-Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced p-cell function, as indicated by homeostasis model assessment of beta-cell function. Analysis using a weighted risk score showed an increase [beta (95% CI)] in fasting glucose level of 0.026 mrnol/L (0.021-0.031) for each unit increase in the score. CONCLUSIONS-Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards. Diabetes 60:1805-1812, 2011
  •  
8.
  • Chaillou, Thomas, 1985-, et al. (författare)
  • Ambient hypoxia enhances the loss of muscle mass after extensive injury
  • 2014
  • Ingår i: Pflügers Archiv. - : Springer. - 0031-6768 .- 1432-2013. ; 466:3, s. 587-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia induces a loss of skeletal muscle mass and alters myogenesis in vitro, but whether it affects muscle regeneration in vivo following injury remains to be elucidated. We hypothesized that hypoxia would impair the recovery of muscle mass during regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14, and 28 days under normoxia or hypobaric hypoxia (5,500 m) conditions. Hypoxia impaired the formation and growth of new myofibers and enhanced the loss of muscle mass during the first 7 days of regeneration, but did not affect the final recovery of muscle mass at 28 days. The impaired regeneration under hypoxic conditions was associated with a blunted activation of mechanical target of rapamycin (mTOR) signaling as assessed by p70(S6K) and 4E-BP1 phosphorylation that was independent of Akt activation. The decrease in mTOR activity with hypoxia was consistent with the increase in AMP-activated protein kinase activity, but not related to the change in regulated in development and DNA response 1 protein content. Hypoxia increased the mRNA levels of the atrogene muscle ring finger-1 after 7 days of regeneration, though muscle atrophy F box transcript levels remained unchanged. The increase in MyoD and myogenin mRNA expression with regeneration was attenuated at 7 days with hypoxia. In conclusion, our results support the notion that the enhanced loss of muscle mass observed after 1 week of regeneration under hypoxic conditions could mainly result from the impaired formation and growth of new fibers resulting from a reduction in protein synthesis and satellite cell activity.
  •  
9.
  • Chaillou, Thomas, 1985-, et al. (författare)
  • Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth
  • 2015
  • Ingår i: Journal of applied physiology. - Bethesda, USA : American Physiological Society. - 8750-7587 .- 1522-1601. ; 118, s. 86-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.
  •  
10.
  • Kirby, T.J., et al. (författare)
  • Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis
  • 2015
  • Ingår i: Journal of applied physiology. - Bethesda, USA : American Physiological Society. - 8750-7587 .- 1522-1601. ; 119:4, s. 321-327
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of skeletal muscle to hypertrophy in response to a growth stimulus is known to be compromised in older individuals. We hypothesized that a change in the expression of protein-encoding genes in response to a hypertrophic stimulus contributes to the blunted hypertrophy observed with aging. To test this hypothesis, we determined gene expression by microarray analysis of plantaris muscle from 5- and 25-mo-old mice subjected to 1, 3, 5, 7, 10, and 14 days of synergist ablation to induce hypertrophy. Overall, 1,607 genes were identified as being differentially expressed across the time course between young and old groups; however, the difference in gene expression was modest, with cluster analysis showing a similar pattern of expression between the two groups. Despite ribosome protein gene expression being higher in the aged group, ribosome biogenesis was significantly blunted in the skeletal muscle of aged mice compared with mice young in response to the hypertrophic stimulus (50% vs. 2.5-fold, respectively). The failure to upregulate pre-47S ribosomal RNA (rRNA) expression in muscle undergoing hypertrophy of old mice indicated that rDNA transcription by RNA polymerase I was impaired. Contrary to our hypothesis, the findings of the study suggest that impaired ribosome biogenesis was a primary factor underlying the blunted hypertrophic response observed in skeletal muscle of old mice rather than dramatic differences in the expression of protein-encoding genes. The diminished increase in total RNA, pre-47S rRNA, and 28S rRNA expression in aged muscle suggest that the primary dysfunction in ribosome biogenesis occurs at the level of rRNA transcription and processing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy