SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(McLean C) ;lar1:(kth)"

Search: WFRF:(McLean C) > Royal Institute of Technology

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Rudakov, D. L., et al. (author)
  • Dust measurements in tokamaks (invited)
  • 2008
  • In: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10F303-
  • Journal article (peer-reviewed)abstract
    • Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 mu m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
  •  
3.
  • Allen, S. L., et al. (author)
  • C-13 transport studies in L-mode divertor plasmas on DIII-D
  • 2005
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 337-39:03-jan, s. 30-34
  • Journal article (peer-reviewed)abstract
    • (CH4)-C-13 was injected with a toroidally-symmetric gas system into 22 identical lower-single-null L-mode discharges on DIII-D. The injection level was adjusted so that it did not significantly perturb the core or divertor plasmas, with a duration of similar to 3 s on each shot, for a total of similar to 300 T L of injected particles. The plasma shape remained very constant; the divertor strike points were controlled to similar to 1 cm at the divertor plate. At the beginning of the subsequent machine vent, 29 carbon tiles were removed for nuclear reaction analysis of C-13 content to determine regions of carbon deposition. It was found that only the tiles inboard of the inner strike point had appreciable 1 3 C above background. Visible spectroscopy measurements of the carbon injection and comparisons with modeling are consistent with carbon transport by means of scrape-off layer flow.
  •  
4.
  • Bykov, I., et al. (author)
  • Modification of adhered dust on plasma-facing surfaces due to exposure to ELMy H-mode plasma in DIII-D
  • 2017
  • In: NUCLEAR MATERIALS AND ENERGY. - : Elsevier BV. - 2352-1791. ; 12, s. 379-385
  • Journal article (peer-reviewed)abstract
    • Transient heat load tests have been conducted in the lower divertor of DIII-D using DiMES manipulator in order to study the behavior of dust on tungsten Plasma Facing Components (PFCs) during ELMy H-mode discharges. Samples with pre- adhered, pre- characterized dust have been exposed at the outer strike point (OSP) in a series of discharges with varied intra-(inter-) ELM heat fluxes. We used C dust because of its high sublimation temperature and non-metal properties. Al dust as a surrogate for Be and W dust were employed as relevant to that in the ITER divertor. The poor initial thermal contact between the substrate and the particles led to overheating, sublimation and shrinking of the carbon dust, and wetting induced coagulation of Al dust. Little modification of the W dust was observed. An enhanced surface adhesion and improvement of the thermal contact of C and Al dust were the result of exposure. A post mortem "adhesive tape" sampling showed that 70% of Al, <5% of W and C particles could not be removed from the surface owing to the improved adhesion. Al and C but not W particles that could be lifted had W inclusions indicating damage to the substrate. This suggests that non destructive methods may be inefficient for removal of dust in ITER.
  •  
5.
  • Litnovsky, A., et al. (author)
  • Diagnostic mirrors for ITER : A material choice and the impact of erosion and deposition on their performance
  • 2007
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 363, s. 1395-1402
  • Journal article (peer-reviewed)abstract
    • Metal mirrors will be implemented in about half of the ITER diagnostics. Mirrors in ITER will have to withstand radiation loads, erosion by charge-exchange neutrals, deposition of impurities, particle implantation and neutron irradiation. It is believed that the optical properties of diagnostic mirrors will be primarily influenced by erosion and deposition. A solution is needed for optimal performance of mirrors in ITER throughout the entire lifetime of the machine. A multi-machine research on diagnostic mirrors is currently underway in fusion facilities at several institutions and laboratories worldwide. Among others, dedicated investigations of ITER-candidate mirror materials are ongoing in Tore-Supra, TEXTOR, DIII-D, TCV, T-10 and JET. Laboratory studies are underway at IPP Kharkov (Ukraine), Kurchatov Institute (Russia) and the University of Basel (Switzerland). An overview of current research on diagnostic mirrors along with an outlook on future investigations is the subject of this paper.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (5)
Type of content
peer-reviewed (5)
Author/Editor
Rubel, Marek J. (2)
Liu, X (1)
Hansen, E. (1)
Chen, X. (1)
Huang, Y. (1)
Izzo, V. (1)
show more...
Ji, H. (1)
King, M. (1)
Kobayashi, T. (1)
Li, L. (1)
Li, Y. (1)
Liu, D. (1)
Liu, Y. (1)
Nelson, A. (1)
Qian, J. (1)
Su, D. (1)
Suzuki, Y. (1)
Wang, H. (1)
White, R. (1)
Wu, M. (1)
Wu, Y. (1)
Yan, Z. (1)
Yu, J. (1)
Zhang, J. (1)
Zhang, L. (1)
Zhang, X. (1)
Zhu, J. (1)
Zhu, Y. (1)
Hu, Q. (1)
Liu, J. (1)
Zhang, R. (1)
Brown, G. (1)
Li, X. (1)
Xu, C. (1)
Zhao, L. (1)
Liu, C. (1)
Smith, D. (1)
Banerjee, S. (1)
Liu, T. (1)
Han, H. (1)
Hill, D. (1)
Li, J. (1)
Robinson, J. (1)
Yu, M. (1)
Ren, Y. (1)
Park, J (1)
Wei, Y. (1)
Adams, M. (1)
Kim, H. S. (1)
Yang, S. (1)
show less...
University
Chalmers University of Technology (1)
Language
English (5)
Research subject (UKÄ/SCB)
Natural sciences (2)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view