SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Melander Olle) ;lar1:(ki)"

Sökning: WFRF:(Melander Olle) > Karolinska Institutet

  • Resultat 1-10 av 90
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • van Zuydam, NR, et al. (författare)
  • A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
  • 2018
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 67:7, s. 1414-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
  •  
3.
  • Aragam, KG, et al. (författare)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
4.
  • Aragam, KG, et al. (författare)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
5.
  • Brunkwall, Louise, et al. (författare)
  • The Malmö Offspring Study (MOS) : design, methods and first results.
  • 2021
  • Ingår i: European Journal of Epidemiology. - : Springer Nature. - 0393-2990 .- 1573-7284. ; 36, s. 103-116
  • Tidskriftsartikel (refereegranskat)abstract
    • As cardio metabolic disease manifestations tend to cluster in families there is a need to better understand the underlying mechanisms in order to further develop preventive strategies. In fact, genetic markers used in genetic risk scores, important as they are, will not be able alone to explain these family clusters. Therefore, the search goes on for the so called missing heritability to better explain these associations. Shared lifestyle and social conditions in families, but also early life influences may be of importance. Gene-environmental interactions should be explored. In recent years interest has grown for the role of diet-microbiota associations, as microbiota patterns may be shared by family members. In the Malmö Offspring Study that started in 2013, we have so far been able to examine about 4700 subjects (18-71 years) representing children and grandchildren of index subjects from the first generation, examined in the Malmö Diet Cancer Study during 1991 to 1996. This will provide rich data and opportunities to analyse family traits of chronic disease across three generations. We will provide extensive genotyping and phenotyping including cardiovascular and respiratory function, as well as markers of glucose metabolism. In addition, also cognitive function will be assessed. A 4-day online dietary recall will be conducted and gut as well as oral microbiota analysed. The ambition is to provide one of the first large-scale European family studies with individual data across three generations, which could deepen our knowledge about the role of family traits for chronic disease and its underlying mechanisms.
  •  
6.
  •  
7.
  •  
8.
  • Folkersen, Lasse, et al. (författare)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
9.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
10.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 90
Typ av publikation
tidskriftsartikel (90)
Typ av innehåll
refereegranskat (90)
Författare/redaktör
Melander, Olle (89)
Lind, Lars (26)
Hamsten, Anders (21)
Orho-Melander, Marju (20)
Engström, Gunnar (18)
Almgren, Peter (18)
visa fler...
Wareham, Nicholas J. (15)
Samani, Nilesh J. (15)
Salomaa, Veikko (14)
Danesh, J (14)
Groop, Leif (13)
Boerwinkle, E (13)
Saleheen, D (13)
Hamsten, A (12)
Langenberg, Claudia (12)
Ingelsson, Erik (12)
de Faire, Ulf (12)
Salomaa, V (12)
Thorsteinsdottir, U (12)
Stefansson, K (12)
Boeing, Heiner (11)
Gudnason, V (11)
Gieger, Christian (11)
Lind, L (11)
Overvad, Kim (10)
Langenberg, C. (10)
Perola, Markus (10)
Esko, T (10)
Thorleifsson, G (10)
Gigante, Bruna (10)
Farrall, Martin (10)
Ärnlöv, Johan, 1970- (9)
Shah, S (9)
Nilsson, Peter (9)
Weiderpass, Elisabet ... (9)
Trompet, S (9)
Teumer, A (9)
Hofman, A (9)
Psaty, BM (9)
Rotter, JI (9)
Uitterlinden, AG (9)
Panico, Salvatore (9)
McCarthy, Mark I (9)
Boehnke, Michael (9)
de Faire, U (9)
Stefansson, Kari (9)
Clarke, R (9)
Wareham, NJ (9)
Gustafsson, Stefan (9)
Metspalu, Andres (9)
visa färre...
Lärosäte
Lunds universitet (88)
Uppsala universitet (45)
Umeå universitet (21)
Göteborgs universitet (14)
Högskolan Dalarna (10)
visa fler...
Linköpings universitet (5)
Stockholms universitet (2)
Luleå tekniska universitet (1)
Örebro universitet (1)
Malmö universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (90)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (89)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy