SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Metzger J) "

Search: WFRF:(Metzger J)

  • Result 1-10 of 72
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S., et al. (author)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Research review (peer-reviewed)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
6.
  •  
7.
  • 2019
  • Journal article (peer-reviewed)
  •  
8.
  •  
9.
  • Scolnic, D., et al. (author)
  • How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
  • 2018
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 852:1
  • Journal article (peer-reviewed)abstract
    • The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of 103Gpc(-3) yr(-1), consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z = 0.8 for WFIRST, z = 0.25 for LSST, and z = 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 72
Type of publication
journal article (60)
conference paper (4)
research review (3)
other publication (2)
Type of content
peer-reviewed (63)
other academic/artistic (5)
pop. science, debate, etc. (1)
Author/Editor
Jones, M. (6)
Khan, A. (5)
Chen, S. (4)
Davies, M. (4)
Jones, G. (4)
King, M. (4)
show more...
Lopes, L. (4)
Losada, M. (4)
Qureshi, A. (4)
Romano, M. (4)
Zhang, H. (4)
Davies, E. (4)
Gupta, A. (4)
Liu, T. (4)
Martin, J. (4)
Aytac, E (4)
Davies, RJ (4)
Hompes, R (4)
Lakkis, Z (4)
Rottoli, M (4)
Shaikh, (4)
Tsarkov, P (4)
James, A. (4)
Silva, M. (4)
Moore, R. (4)
Russ, J. (4)
Williams, G. (4)
Giraudo, G. (4)
Kumar, L. (4)
Sharma, N. (4)
Singh, R. (4)
Nowak, K. (4)
Costa, M. (4)
O'Brien, S. (4)
Evans, M. (4)
Patel, P. (4)
Abate, E. (4)
Lee, M (4)
Ali, M (4)
Ali, S (4)
Negoi, I (4)
Pereira, A (4)
Salem, H (4)
Shah, S (4)
Desai, A. (4)
Evans, J. (4)
Young, R. (4)
Bonilla, A. (4)
Sharma, P. (4)
Abdalla, M. (4)
show less...
University
Karolinska Institutet (20)
Stockholm University (17)
University of Gothenburg (14)
Lund University (14)
Uppsala University (11)
Stockholm School of Economics (4)
show more...
Umeå University (3)
Royal Institute of Technology (3)
Chalmers University of Technology (3)
Linköping University (2)
Swedish University of Agricultural Sciences (2)
Halmstad University (1)
University of Borås (1)
Högskolan Dalarna (1)
show less...
Language
English (71)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (36)
Medical and Health Sciences (13)
Social Sciences (8)
Agricultural Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view