SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Middlemas E.) "

Search: WFRF:(Middlemas E.)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aartsen, M. G., et al. (author)
  • Search for astrophysical tau neutrinos in three years of IceCube data
  • 2016
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 93:2
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory has observed a diffuse flux of TeV-PeVastrophysical neutrinos at 5.7 sigma significance from an all-flavor search. The direct detection of tau neutrinos in this flux has yet to occur. Tau neutrinos become distinguishable from other flavors in IceCube at energies above a few hundred TeV, when the cascade from the tau neutrino charged current interaction becomes resolvable from the cascade from the tau lepton decay. This paper presents results from the first dedicated search for tau neutrinos with energies between 214 TeV and 72 PeV in the full IceCube detector. The analysis searches for IceCube optical sensors that observe two separate pulses in a single event-one from the tau neutrino interaction and a second from the tau decay. No candidate events were observed in three years of IceCube data. For the first time, a differential upper limit on astrophysical tau neutrinos is derived around the PeV energy region, which is nearly 3 orders of magnitude lower in energy than previous limits from dedicated tau neutrino searches.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • The Search For Transient Astrophysical Neutrino Emission With Icecube-Deepcore
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 816:2
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
  •  
3.
  • Aartsen, M. G., et al. (author)
  • Characterization of the atmospheric muon flux in IceCube
  • 2016
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 78, s. 1-27
  • Journal article (peer-reviewed)abstract
    • Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
  •  
4.
  • Aartsen, M. G., et al. (author)
  • Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
  • 2015
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:7
  • Journal article (peer-reviewed)abstract
    • We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Delta m(32)(2) = 2.72(-0.20)(+0.19) x 10(-3) eV(2) and sin(2)theta(23) = 0.53(-0.12)(+0.09) (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
  •  
5.
  • Aartsen, M. G., et al. (author)
  • Search for dark matter annihilation in the Galactic Center with IceCube-79
  • 2015
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:10
  • Journal article (peer-reviewed)abstract
    • The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, < sAv >, for WIMP masses ranging from 30GeV up to 10TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to similar or equal to 4 . 10(-24) cm(3) s(-1), and similar or equal to 2.6 . 10(-23) cm(3) s(-1) for the nu(nu) over bar channel, respectively.
  •  
6.
  • Aartsen, M. G., et al. (author)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
7.
  • Aartsen, M. G., et al. (author)
  • A Combined Maximum-Likelihood Analysis Of The High-Energy Astrophysical Neutrino Flux Measured With Icecube
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 809:1
  • Journal article (peer-reviewed)abstract
    • Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies greater than or similar to 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, nu(mu)-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 +/- 0.09 and a flux at 100 TeV of (6.7(-1.2)(+1.1)) x 10(-18) GeV-1 s(-1) sr(-1) cm(-2). Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8 sigma (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 sigma (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a nu(e) fraction of 0.18 +/- 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6 sigma ( p = 0.014%).
  •  
8.
  • Aartsen, M. G., et al. (author)
  • Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube
  • 2015
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 115:8
  • Journal article (peer-reviewed)abstract
    • Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of nu(e) and nu(tau) charged-current and neutral-current ( cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35 000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E-nu) = 9.9(-3.4)(+3.9) x 10(-19) GeV-1 cm(-2) sr(-1) s(-1) (E-nu/100 TeV)(-2), consistent with IceCube's Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed. We find a spectral index of 2.2(-0.2)(+0.2), which is also in good agreement with the Southern Hemisphere result.
  •  
9.
  • Aartsen, M. G., et al. (author)
  • Measurement of the Atmospheric nu(e) Spectrum with IceCube
  • 2015
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:12
  • Journal article (peer-reviewed)abstract
    • We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic.
  •  
10.
  • Aartsen, M. G., et al. (author)
  • SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 796:2, s. 109-
  • Journal article (peer-reviewed)abstract
    • We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E-2 spectrum, the observed 90% C. L. flux upper limits are similar to 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and similar to 10(-11) TeV-1 cm(-2) s(-1) for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view