SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Miller Dennis J.) ;lar1:(su)"

Search: WFRF:(Miller Dennis J.) > Stockholm University

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • 2019
  • Journal article (peer-reviewed)
  •  
4.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Bellm, Eric C., et al. (author)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
6.
  • McGuire, A. David, et al. (author)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • In: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Journal article (peer-reviewed)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
7.
  • Polyak, Leonid, et al. (author)
  • History of sea ice in the Arctic
  • 2010
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:15-16, s. 1757-1778
  • Journal article (peer-reviewed)abstract
    • Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This information can be provided by proxy records from the Arctic Ocean floor and from the surrounding coasts. Although existing records are far from complete, they indicate that sea ice became a feature of the Arctic by 47 Ma, following a pronounced decline in atmospheric pCO(2) after the Paleocene-Eocene Thermal Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13-14 million years. Ice was apparently most widespread during the last 2-3 million years, in accordance with Earth's overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even seasonally ice-free conditions occurred during warmer periods linked to orbital variations. The last low-ice event related to orbital forcing (high insolation) was in the early Holocene, after which the northern high latitudes cooled overall, with some superimposed shorterterm (multidecadal to millennial-scale) and lower-magnitude variability. The current reduction in Arctic ice cover started in the late 19th century, consistent with the rapidly warming climate, and became very pronounced over the last three decades. This ice loss appears to be unmatched over at least the last few thousand years and unexplainable by any of the known natural variabilities.
  •  
8.
  • Öberg, Henrik, et al. (author)
  • Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure
  • 2013
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:32, s. 16371-16380
  • Journal article (peer-reviewed)abstract
    • The electronic structure and stability of Cu(111)-hosted Pt overlayers with and without the presence of atomic oxygen have been studied by means of core-level spectroscopy and density functional theory (DFT). Because of lattice mismatch, Pt(111) overlayers grown on Cu(111) are compressively strained, and hard X-ray photoelectron spectroscopy together with Pt L-3-edge X-ray absorption spectroscopy (XAS) reveals a pronounced downshift of the Pt d-band owing to the increased overlap of the d-orbitals, an effect also reproduced theoretically. Exposure to oxygen severely alters the surface composition; the O-Cu binding energy largely exceeds that of O-Pt, and DFT calculations predict surface segregation of Cu atoms. Comparing the adsorbate electronic structure for O on unstrained Pt(111) with that of O on Pt-modified Cu(111) using O K-edge XAS and X-ray emission spectroscopy salient differences are observed and calculations show that Cu-segregation to the topmost layer is required to reproduce the measured spectra. It is proposed that O is binding in a hollow site constituted by at least two Cu atoms and that up to 75% of the Pt atoms migrate below the surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view