SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miller N) ;hsvcat:2"

Sökning: WFRF:(Miller N) > Teknik

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fortier, A., et al. (författare)
  • CHEOPS in-flight performance: A comprehensive look at the first 3.5 yr of operations
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the discovery of the first exoplanet almost three decades ago, the number of known exoplanets has increased dramatically. By beginning of the 2000s it was clear that dedicated facilities to advance our studies in this field were needed. The CHaracterising ExOPlanet Satellite (CHEOPS) is a space telescope specifically designed to monitor transiting exoplanets orbiting bright stars. In September 2023, CHEOPS completed its nominal mission duration of 3.5 yr and remains in excellent operational conditions. As a testament to this, the mission has been extended until the end of 2026. Aims. Scientific and instrumental data have been collected throughout in-orbit commissioning and nominal operations, enabling a comprehensive analysis of the missiona's performance. In this article, we present the results of this analysis with a twofold goal. First, we aim to inform the scientific community about the present status of the mission and what can be expected as the instrument ages. Secondly, we intend for this publication to serve as a legacy document for future missions, providing insights and lessons learned from the successful operation of CHEOPS. Methods. To evaluate the instrument performance in flight, we developed a comprehensive monitoring and characterisation (M&C) programme. It consists of dedicated observations that allow us to characterise the instrumenta's response and continuously monitor its behaviour. In addition to the standard collection of nominal science and housekeeping data, these observations provide valuable input for detecting, modelling, and correcting instrument systematics, discovering and addressing anomalies, and comparing the instrumenta's actual performance with expectations. Results. The precision of the CHEOPS measurements has enabled the mission objectives to be met and exceeded. The satellitea's performance remains stable and reliable, ensuring accurate data collection throughout its operational life. Careful modelling of the instrumental systematics allows the data quality to be significantly improved during the light curve analysis phase, resulting in more precise scientific measurements. Conclusions. CHEOPS is compliant with the driving scientific requirements of the mission. Although visible, the ageing of the instrument has not affected the missiona's performance. The satellitea's capabilities remain robust, and we are confident that we will continue to acquire high-quality data during the mission extension.
  •  
2.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
3.
  • Milligan, M., et al. (författare)
  • Preface : Wind Power Myths Debunked
  • 2012
  • Ingår i: Wind Power in Power Systems, Second Edition. - : John Wiley and Sons. ; , s. 7-20
  • Bokkapitel (refereegranskat)abstract
    • Wind power use has grown significantly in recent years. As power system planners, investors, and other stakeholders evaluate the development of wind power plants, many questions about wind power plant operational characteristics have arisen. These questions range from asking whether wind power plants require storage, to how fast can wind power plants' output fall to zero. Recent experience in operating power systems with increasing levels of wind power, along with a significant body of analysis, has provided answers to many of these questions. In this chapter, we discuss many of these key questions and answers drawing on international experience and analysis of wind power plant operations. 
  •  
4.
  • Parma, Valentina, et al. (författare)
  • Enhancement of Odor Sensitivity Following Repeated Odor and Visual Fear Conditioning
  • 2015
  • Ingår i: Chemical Senses. - : Oxford University Press (OUP). - 0379-864X .- 1464-3553. ; 40:7, s. 497-506
  • Tidskriftsartikel (refereegranskat)abstract
    • Odor detection sensitivity can be rapidly altered by fear conditioning; whether this effect is augmented over time is not known. The present study aimed to test whether repeated conditioning sessions induce changes in odor detection threshold as well as in conditioned responses and whether olfactory stimuli evoke stronger conditioned responses than visual stimuli. The repeated conditioning group participated in repeated sessions over 2 weeks whereas the single conditioning group participated in 1 conditioning session; both groups were presented with visual and olfactory stimuli, were paired with an electric shock (CS+) and 2 matched control stimuli not paired with shock (CS-) while olfactory detection threshold and skin conductance responses (SCRs) were measured before and after the last session. We found increased sensitivity for the CS+ odor in the repeated but not in the single conditioning group, consistent with changes in olfactory sensitivity following repeated aversive learning and of a similar magnitude to what has previously been demonstrated in the periphery. SCR to the visual and olfactory CS+ were similar between groups, indicating that sensory thresholds can change without corresponding change in conditioned responses. In conclusion, repeated conditioning increases detection sensitivity and reduces conditioned responses, suggesting that segregated processes influence perception and conditioned responses.
  •  
5.
  • Russell, T. D., et al. (författare)
  • Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to = 0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
  •  
6.
  • Ryden, N., et al. (författare)
  • Multichannel analysis of seismic waves for layer moduli evaluation of pavements
  • 2022
  • Ingår i: Bearing Capacity Of Roads Railways and Airfields. - London : CRC Press. - 9789058093967 - 9781000108101 ; , s. 705-714
  • Bokkapitel (refereegranskat)abstract
    • Results from the application of a new seismic technique for non-destructive testing of pavement layer moduli are presented. The method is based on the multichannel analysis of surface waves (MASW) method and multichannel simulation with one receiver (MSOR). The MSOR method uses one accelerometer (receiver), a light hammer (source), and a single-channel recording device to generate a simulated multichannel record in a fast and simple manner. In the case study presented, the dispersion curve of surface waves shows different branches associated with the layers of different stiffness. From an objective observation of branches, seismic velocities, and resonant frequencies we evaluate the total number of layers with different stiffness properties, the dynamic E-modulus, Poisson's ratio, and thickness of the top asphalt layers. We propose using this information in the back-calculation of Falling Weight Deflectometer (FWD) data.
  •  
7.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy