1. |
|
|
2. |
|
|
3. |
|
|
4. |
|
|
5. |
- Cordoni, G., et al.
(författare)
-
Exploring the Galaxy's halo and very metal-weak thick disc with SkyMapper and Gaia DR2
- 2021
-
Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:2, s. 2539-2561
-
Tidskriftsartikel (refereegranskat)abstract
- In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of -6.5 <= [Fe/H] <= -2.05 dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of [Fe/H] = - 3.31 and - 3.74, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that similar to 21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Z(max)| <= 3 kpc. Of particular interest is a subsample (similar to 11 per cent of the total) of low |Z(max)| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = -4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Z(max)|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Z(max)|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (similar to 4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted.
|
|
6. |
- Cordoni, G., et al.
(författare)
-
Gaia and Hubble Unveil the Kinematics of Stellar Populations in the Type II Globular Clusters ? Centauri and M22
- 2020
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:2
-
Tidskriftsartikel (refereegranskat)abstract
- The origin of multiple stellar populations in globular clusters (GCs) is one of the greatest mysteries of modern stellar astrophysics. N-body simulations suggest that the present-day dynamics of GC stars can constrain the events that occurred at high redshift and led to the formation of multiple populations. Here, we combine multiband photometry from the Hubble Space Telescope (HST) and ground-based facilities with HST and Gaia Data Release 2 proper motions to investigate the spatial distributions and the motions in the plane of the sky of multiple populations in the Type II GCs NGC 5139 (? Centauri) and NGC 6656 (M22). We first analyzed stellar populations with different metallicities. Fe-poor and Fe-rich stars in M22 share similar spatial distributions and rotation patterns and exhibit similar isotropic motions. Similarly, the two main populations with different iron abundance in ? Centauri share similar ellipticities and rotation patterns. When different radial regions are analyzed, we find that the rotation amplitude decreases from the center toward the external regions. Fe-poor and Fe-rich stars of ? Centauri are radially anisotropic in the central region and show similar degrees of anisotropy. We also investigate the stellar populations with different light-element abundances and find that their N-rich stars exhibit higher ellipticity than N-poor stars. In ? Centauri both stellar groups are radially anisotropic. Interestingly, N-rich, Fe-rich stars exhibit different rotation patterns than N-poor stars with similar metallicities. The stellar populations with different nitrogen of M22 exhibit similar rotation patterns and isotropic motions. We discuss these findings in the context of the formation of multiple populations.
|
|
7. |
|
|
8. |
|
|
9. |
|
|
10. |
|
|