SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moens Lotte) ;pers:(Adolfsson Rolf)"

Sökning: WFRF:(Moens Lotte) > Adolfsson Rolf

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alaerts, Maaike, et al. (författare)
  • Detailed analysis of the serotonin transporter gene (SLC6A4) shows no association with bipolar disorder in the Northern Swedish population
  • 2009
  • Ingår i: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. - : John Wiley & Sons, Inc. - 1552-4841 .- 1552-485X. ; 150B:4, s. 585-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Through active reuptake of serotonin into presynaptic neurons, the serotonin transporter (5-HTT) plays an important role in regulating serotonin concentrations in the brain, and it is the site of binding for tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Therefore it has been hypothesized that this transporter is involved in the etiology of bipolar (BP) disorder. Inconsistent association study results for the SLC6A4 gene encoding 5-HTT reported in literature emphasize the need for more systematic and detailed analyses of this candidate gene. We performed an extensive analysis of SLC6A4 on DNA of 254 BPI patients and 364 control individuals from a Northern Swedish isolated population. This analysis consisted of a HapMap LD-based association study including three widely investigated polymorphisms (5-HTTVNTR, 5-HTTLPR, and rs3813034), a copy-number variation (CNV) analysis and a mutation analysis of the complete coding sequence and the 3'-UTR of SLC6A4. No single marker showed statistically significant association with BPI, nor did any of the haplotypes. In the mutation analysis 13 novel variants were detected, including 2 amino acid substitutions M389V and 1587L, but these are probably not implicated in risk for BP. No deletions or duplications were detected in the CNV analysis. We conclude that variation in the SLC6A4 gene or its regulatory regions does not contribute to the susceptibility for BP disorder in the Northern Swedish population.
  •  
2.
  • Alaerts, Maaike, et al. (författare)
  • Support for NRG1 as a Susceptibility Factor for Schizophrenia in a Northern Swedish Isolated Population
  • 2009
  • Ingår i: Archives of General Psychiatry. - : American Medical Association. - 0003-990X .- 1538-3636. ; 66:8, s. 828-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Neuregulin 1 (NRG1), a growth factor involved in neurodevelopment, myelination, neurotransmitter receptor expression, and synaptic plasticity, first joined the list of candidate genes for schizophrenia when a 7-marker haplotype at the 5' end of the gene (Hap(ICE)) was shown to be associated with the disorder in the Icelandic population. Since then, more genetic and functional evidence has emerged, which supports a role for NRG1 in the development of schizophrenia.Objective: To determine the contribution of NRG1 to susceptibility for schizophrenia in a northern Swedish isolated population.Design: Detailed linkage disequilibrium (LD)-based patient- control association study. This is the first study to type and analyze the 7 Hap(ICE) markers and a set of 32 HapMap tagging single-nucleotide polymorphisms (SNPs) that represents variants with a minor allele frequency of at least 1% and fully characterizes the LD structure of the 5' part of NRG1.Setting: Outpatient and inpatient hospitals.Participants: A total of 486 unrelated patients with schizophrenia and 514 unrelated control individuals recruited from a northern Swedish isolated population.Main Outcome Measures: Association between markers and disease.Results: Analysis of the Hap(ICE) markers showed the association of a 7-marker and 2-microsatellite haplotype, different from the haplotypes associated in the Icelandic population and overrepresented in northern Swedish control individuals. Subsequently, a more detailed analysis that included all 37 genotyped SNPs was performed by investigating haplotypic association, dependent and independent of LD block structure. We found significant association with 5 SNPs located in the second intron of NRG1 (.007 <= P <= .04). Also, 2-, 3-, and 4-SNP windows that comprise these SNPs were associated (P < 3 x 10(-4)). One protective haplotype (0% vs 1.8%; P < 5 x 10(-5)) and 1 disease risk-causing haplotype (40.4% vs 34.9%, P=.02) were defined.Conclusion: The NRG1 gene contributes to the susceptibility for schizophrenia in the northern Swedish population.
  •  
3.
  • Moens, Lotte N, et al. (författare)
  • PCM1 and schizophrenia : a replication study in the Northern Swedish population
  • 2010
  • Ingår i: American Journal of Medical Genetics. - : Wiley. - 0148-7299 .- 1096-8628. ; 153B:6, s. 1240-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies implicated centrosomal dysfunction as a source of various neuropsychiatric disorders, including schizophrenia (SZ). Two recent reports [Gurling et al., 2006; Datta et al., 2008. Mol Psychiatry] described an association between polymorphisms in the PCM1 gene and SZ in a UK/Scottish population. In this study, we aimed to replicate these findings in a Northern Swedish association sample of 486 research subjects with SZ and 512 unrelated control individuals. We genotyped 12 previously described SNP markers and carried out haplotype analyses using the same multi-marker haplotypes previously reported. Though we could not replicate the association with SNPs rs445422 and rs208747, we did observe a significant protective association with intronic SNP rs13276297. Furthermore, we performed a meta-analysis comprising 1,794 SZ patients and 1,553 controls, which confirmed the previously reported association with rs445422 and rs208747. These data provide further evidence that PCM1-though certainly not a major risk factor in the Northern Swedish population-cannot be ruled out as a contributor to SZ risk and/or protection, and deserves further replication in larger populations to elucidate its role in disease etiology.
  •  
4.
  • Moens, Lotte N, et al. (författare)
  • Sequencing of DISC1 Pathway Genes Reveals Increased Burden of Rare Missense Variants in Schizophrenia Patients from a Northern Swedish Population
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:8, s. e23450-
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, DISC1 has emerged as one of the most credible and best supported candidate genes for schizophrenia and related neuropsychiatric disorders. Furthermore, increasing evidence - both genetic and functional - indicates that many of its protein interaction partners are also involved in the development of these diseases. In this study, we applied a pooled sample 454 sequencing strategy, to explore the contribution of genetic variation in DISC1 and 10 of its interaction partners (ATF5, Grb2, FEZ1, LIS-1, PDE4B, NDE1, NDEL1, TRAF3IP1, YWHAE, and ZNF365) to schizophrenia susceptibility in an isolated northern Swedish population. Mutation burden analysis of the identified variants in a population of 486 SZ patients and 514 control individuals, revealed that non-synonymous rare variants with a MAF<0.01 were significantly more present in patients compared to controls (8.64% versus 4.7%, P = 0.018), providing further evidence for the involvement of DISC1 and some of its interaction partners in psychiatric disorders. This increased burden of rare missense variants was even more striking in a subgroup of early onset patients (12.9% versus 4.7%, P = 0.0004), highlighting the importance of studying subgroups of patients and identifying endophenotypes. Upon investigation of the potential functional effects associated with the identified missense variants, we found that similar to 90% of these variants reside in intrinsically disordered protein regions. The observed increase in mutation burden in patients provides further support for the role of the DISC1 pathway in schizophrenia. Furthermore, this study presents the first evidence supporting the involvement of mutations within intrinsically disordered protein regions in the pathogenesis of psychiatric disorders. As many important biological functions depend directly on the disordered state, alteration of this disorder in key pathways may represent an intriguing new disease mechanism for schizophrenia and related neuropsychiatric diseases. Further research into this unexplored domain will be required to elucidate the role of the identified variants in schizophrenia etiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy