SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moens Lotte) ;pers:(Mattsson Johanna Sofia Margareta 1985)"

Sökning: WFRF:(Moens Lotte) > Mattsson Johanna Sofia Margareta 1985

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • La Fleur, Linnea, et al. (författare)
  • Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11
  • 2019
  • Ingår i: Lung Cancer. - : Elsevier BV. - 0169-5002 .- 1872-8332. ; 130, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Non-small cell lung cancer (NSCLC) is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients, as well as significant differences in populations across the world with regard to mutation spectra and mutation frequencies. Here we aim to describe mutational patterns and linked clinical parameters in a population-based NSCLC cohort.MATERIALS AND METHODS: Using targeted resequencing the mutational status of 82 genes was evaluated in a consecutive Swedish surgical NSCLC cohort, consisting of 352 patient samples from either fresh frozen or formalin fixed paraffin embedded (FFPE) tissues. The panel covers all exons of the 82 genes and utilizes reduced target fragment length and two-strand capture making it compatible with degraded FFPE samples.RESULTS: We obtained a uniform sequencing coverage and mutation load across the fresh frozen and FFPE samples by adaption of sequencing depth and bioinformatic pipeline, thereby avoiding a technical bias between these two sample types. At large, the mutation frequencies resembled the frequencies seen in other western populations, except for a high frequency of KRAS hotspot mutations (43%) in adenocarcinoma patients. Worse overall survival was observed for adenocarcinoma patients with a mutation in either TP53, STK11 or SMARCA4. In the adenocarcinoma KRAS-mutated group poor survival appeared to be linked to concomitant TP53 or STK11 mutations, and not to KRAS mutation as a single aberration. Similar results were seen in the analysis of publicly available data from the cBioPortal. In squamous cell carcinoma a worse prognosis could be observed for patients with MLL2 mutations, while CSMD3 mutations were linked to a better prognosis.CONCLUSION: Here we have evaluated the mutational status of a NSCLC cohort. We could not confirm any survival impact of isolated driver mutations. Instead, concurrent mutations in TP53 and STK11 were shown to confer poor survival in the KRAS-positive adenocarcinoma subgroup.
  •  
2.
  •  
3.
  • Thurfjell, Viktoria, et al. (författare)
  • Comparison of ROS1-rearrangement detection methods in a cohort of surgically resected non-small cell lung carcinomas
  • 2022
  • Ingår i: Translational Lung Cancer Research (TLCR). - : AME Publishing. - 2218-6751 .- 2226-4477. ; 11:12, s. 2477-2494
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Patients with non-small cell lung cancer (NSCLC) harboring a ROS proto-oncogene 1 (ROS1)-rearrangement respond to treatment with ROS1 inhibitors. To distinguish these rare cases, screening with immunohistochemistry (IHC) for ROS1 protein expression has been suggested. However, the reliability of such an assay and the comparability of the antibody clones has been debated. Therefore we evaluated the diagnostic performance of current detection strategies for ROS1-rearrangement in two NSCLC-patient cohorts.Methods: Resected tissue samples, retrospectively collected from consecutive NSCLC-patients surgically treated at Uppsala University Hospital were incorporated into tissue microarrays [all n=676, adenocarcinomas (AC) n=40 1, squamous cell carcinomas (SCC) n=2 13, other NSCLC n=62]. ROS1rearrangements were detected using fluorescence in situ hybridization (FISH) (Abbott Molecular; ZytoVision). In parallel, ROS1 protein expression was detected using IHC with three antibody clones (D4D6, SP384, EPMGHR2) and accuracy, sensitivity, and specificity were determined. Gene expression microarray data (Affymetrix) and RNA-sequencing data were available for a subset of patients. NanoString analyses were performed for samples with positive or ambiguous results (n=21).Results: Using FISH, 2/630 (0.3% all NSCLC; 0.5% non-squamous NSCLC) cases were positive for ROS1 fusion. Additionally, nine cases demonstrated ambiguous FISH results. Using IHC, ROS1 protein expression was detected in 24/665 (3.6% all NSCLC; 5.1% non-squamous NSCLC) cases with clone D4D6, in 18/639 (2.8% all NSCLC; 3.9% non-squamous NSCLC) cases with clone SP384, and in 1/593 (0.2% all NSCLC; 0.3% non-squamous NSCLC) case with clone EPMGHR2. Elevated RNA-levels were seen in 19/369 (5.1%) cases (Affymetrix and RNA-sequencing combined). The overlap of positive results between the assays was poor. Only one of the FISH-positive cases was positive with all antibodies and demonstrated high RNA-expression. This rearrangement was confirmed in the NanoString-assay and also in the RNA sequencing data. Other cases with high protein/RNA-expression or ambiguous FISH were negative in the NanoString-assay.Conclusions: The occurrence of ROS1 fusions is low in our cohorts. The IHC assays detected the fusions, but the accuracy varied depending on the clone. The presumably false-positive and uncertain FISH results questions this method for detection of ROS1-rearrangements. Thus, when IHC is used for screening, transcript-based assays are preferable for validation in clinical diagnostics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy