SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mollace V) "

Sökning: WFRF:(Mollace V)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mare, R., et al. (författare)
  • A Rapid and Cheap Method for Extracting and Quantifying Lycopene Content in Tomato Sauces: Effects of Lycopene Micellar Delivery on Human Osteoblast-like Cells
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying and quantifying the beneficial molecules contained in nutraceuticals is essen-tial to predict the effects derived from their consumption. This study explores a cheap and rapid method for quantifying lycopene content from a semi-solid matrix. In addition, it compares the in vitro effects of the extracts obtained from different tomato sauces available on the local market with Osteocol®, a patented tomato sauce from southern Italy. We performed a liquid extraction of lyco-pene using suitable solvents. The lycopene extracted was encapsulated in surfactant micelles and finally tested in vitro on Saos-2 cells. The effects exerted by lycopene on ALP and Wnt/β-catenin pathways were investigated by Western blotting. Hexane was found to be the best solvent for lyco-pene extraction. Spectrophotometrical and HPLC analyses showed similar trends. Osteocol® contained 39 ± 4 mg lycopene per 100 g of sauce, while the best commercial product contained 19 ± 1 mg/100 g. The Osteocol® lycopene extract increased ALP and β-catenin protein expressions in a dose-dependent manner, also showing statistically significant results (p < 0.05 respectively). In con-clusion, despite both techniques showing similar final results, UV/VIS spectrophotometer is prefer-able to HPLC due to its cheap, rapid, and accurate results, as well as for the opportunity to analyze lycopene-loaded micelles. The extraction and release of lycopene to bone cells positively influences the differentiation of osteoblasts and increases the expression of the ALP and β-catenin proteins. As a consequence, as a lycopene-rich sauce, Osteocol® represents a useful supplement in the prevention of osteoporosis compared to its commercial competitors. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
3.
  • Maurotti, S., et al. (författare)
  • Preventing muscle wasting: pro-insulin C-peptide prevents loss in muscle mass in streptozotocin-diabetic rats
  • 2023
  • Ingår i: Journal of Cachexia Sarcopenia and Muscle. - : Wiley. - 2190-5991 .- 2190-6009. ; 14:2, s. 1117-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundC-peptide therapy exerts several positive actions on nerves, vasculature, smooth muscle relaxation, kidney function and bone. To date, the role of C-peptide in preventing type 1 diabetes-related muscle atrophy has not been investigated. Our aim was to evaluate if C-peptide infusion prevents muscle wasting in diabetic rats. MethodsTwenty-three male Wistar rats were randomly divided into three groups: normal control group, diabetic group and diabetic group plus C-peptide. Diabetes was induced by streptozotocin injection, and C-peptide was administered subcutaneously for 6 weeks. The blood samples were obtained at baseline, before streptozotocin injection and at the end of the study to assess C-peptide, ubiquitin and other laboratory parameters. We also tested the ability of C-peptide to regulate the skeletal muscle mass, the ubiquitin-proteasome system, the autophagy pathway as well as to improve muscle quality. ResultsC-peptide administration reversed hyperglycaemia (P = 0.02) and hypertriglyceridaemia (P = 0.01) in diabetic plus C-peptide rats compared with diabetic control rats. The diabetic-control animals displayed a lower weight of the muscles in the lower limb considered individually than the control rats and the diabetic plus C-peptide rats (P = 0.03; P = 0.03; P = 0.04; P = 0.004, respectively). The diabetic-control rats presented a significantly higher serum concentration of ubiquitin compared with the diabetic plus C-peptide and the control animals (P = 0.02 and P = 0.01). In muscles of the lower limb, the pAmpk expression was higher in the diabetic plus C-peptide than the diabetic-control rats (in the gastrocnemius, P = 0.002; in the tibialis anterior P = 0.005). The protein expression of Atrogin-1 in gastrocnemius and tibialis was lower in the diabetic plus C-peptide than in diabetic-control rats (P = 0.02, P = 0.03). After 42 days, the cross-sectional area in the gastrocnemius of the diabetic plus C-peptide group had been reduced by 6.6% while the diabetic-control rats had a 39.5% reduction compared with the control animals (P = 0.02). The cross-sectional area of the tibialis and the extensor digitorum longus muscles was reduced, in the diabetic plus C-peptide rats, by 10% and 11%, respectively, while the diabetic-control group had a reduction of 65% and 45% compared with the control animals (both P < 0.0001). Similar results were obtained for the minimum Feret's diameter and perimeter. ConclusionsC-peptide administration in rats could protect skeletal muscle mass from atrophy induced by type 1 diabetes mellitus. Our findings could suggest that targeting the ubiquitin-proteasome system, Ampk and muscle-specific E3 ubiquitin ligases such as Atrogin-1 and Traf6 may be an effective strategy for molecular and clinical intervention in the muscle wasting pathological process in T1DM.
  •  
4.
  • Mirarchi, A., et al. (författare)
  • Bergamot Polyphenol Extract Reduces Hepatocyte Neutral Fat by Increasing Beta-Oxidation
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bergamot polyphenolic fraction (PF) extract exerts a beneficial against liver steatosis. However, the fundamental processes underlying this beneficial effect of bergamot PF remain elusive. In this work, we examined the effect of bergamot PF extract on 2D and 3D hepatocyte cultures. Material and Methods: We evaluated the effect of bergamot PF in 2D and 3D cultures from rat, human hepatoma cells, and human primary hepatocytes. Results: In 2D cell culture, we demonstrated that incubation with bergamot PF decreases intracellular lipid content and is associated with an increase in expression levels of ss-oxidation genes (Acox1, Ppar alpha, and Ucp2) and lipophagy (Atg7). Moreover, we confirm this effect on 3D spheroids and organoids. Conclusion: Incubation with bergamot PF reduces intracellular lipid neutral fat potentially by increasing intracellular pathways related to beta-oxidation.
  •  
5.
  • Pujia, A., et al. (författare)
  • Bergamot Polyphenol Fraction Exerts Effects on Bone Biology by Activating ERK 1/2 and Wnt/-Catenin Pathway and Regulating Bone Biomarkers in Bone Cell Cultures
  • 2018
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies show that fruit consumption may modulate bone mineral density. However, data regarding the effect of the Citrus bergamia Risso (Bergamot orange), a citrus fruit containing a high concentration of flavonoids, on bone health are still lacking. In this study, we investigated the effects of Bergamot polyphenols on the Wnt/-catenin pathway in two distinct bone cell types (Saos-2 and MG63). Findings showed that exposure to 0.01 and 0.1 mg/mL doses upregulate -catenin expression (p = 0.001), osteoblast differentiation markers (e.g., RUNX2 and COL1A), and downregulate RANKL (p = 0.028), as compared to the control. Our results highlight, for the first time, that Bergamot polyphenols act on bone cells through the -catenin pathway. In vivo studies are necessary to fully understand Bergamot's role against bone resorption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy