1. |
|
|
2. |
|
|
3. |
- Graham, Sarah E, et al.
(författare)
-
The power of genetic diversity in genome-wide association studies of lipids.
- 2021
-
Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 600:7890, s. 675-679
-
Tidskriftsartikel (refereegranskat)abstract
- Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.
|
|
4. |
- Kanoni, Stavroula, et al.
(författare)
-
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
- 2022
-
Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
-
Tidskriftsartikel (refereegranskat)abstract
- Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
|
|
5. |
- Glasbey, JC, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
6. |
- Mahajan, Anubha, et al.
(författare)
-
Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
- 2022
-
Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
-
Tidskriftsartikel (refereegranskat)abstract
- We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
|
|
7. |
- Tabiri, S, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
8. |
|
|
9. |
- Bravo, L, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
10. |
- Aad, G, et al.
(författare)
-
Observation and measurements of the production of prompt and non-prompt [Formula: see text] mesons in association with a [Formula: see text] boson in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector.
- 2015
-
Ingår i: European Physical Journal C. Particles and Fields. - : Springer. - 1434-6044. ; 75:5
-
Tidskriftsartikel (refereegranskat)abstract
- The production of a [Formula: see text] boson in association with a [Formula: see text] meson in proton-proton collisions probes the production mechanisms of quarkonium and heavy flavour in association with vector bosons, and allows studies of multiple parton scattering. Using [Formula: see text] of data collected with the ATLAS experiment at the LHC in [Formula: see text] collisions at [Formula: see text], the first measurement of associated [Formula: see text] production is presented for both prompt and non-prompt [Formula: see text] production, with both signatures having a significance in excess of [Formula: see text]. The inclusive production cross-sections for [Formula: see text] boson production (analysed in [Formula: see text] or [Formula: see text] decay modes) in association with prompt and non-prompt [Formula: see text] are measured relative to the inclusive production rate of [Formula: see text] bosons in the same fiducial volume to be [Formula: see text] and [Formula: see text] respectively. Normalised differential production cross-section ratios are also determined as a function of the [Formula: see text] transverse momentum. The fraction of signal events arising from single and double parton scattering is estimated, and a lower limit of [Formula: see text] at [Formula: see text] confidence level is placed on the effective cross-section regulating double parton interactions.
|
|