SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller B) srt2:(2020-2021);lar1:(gu)"

Sökning: WFRF:(Mueller B) > (2020-2021) > Göteborgs universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Landén, Mikael, 1966, et al. (författare)
  • Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted “brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d = 0.14, 95% CI: 0.08–0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates. © 2020, The Author(s).
  •  
2.
  •  
3.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  •  
5.
  • Lughadha, E. N., et al. (författare)
  • Extinction risk and threats to plants and fungi
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 389-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement There is increasing awareness that plants and fungi, as natural solutions, can play an important role in tackling ongoing global environmental challenges. We illustrate how understanding current and projected threats to plants and fungi is necessary to manage and mitigate risks, while building awareness of gaps and bias in current assessment coverage is essential to adequately prioritize conservation efforts. We highlight the state of the art in conservation science and point to current methods of assessment and future studies needed to mitigate species extinction. SummaryPlant and fungal biodiversity underpin life on earth and merit careful stewardship in an increasingly uncertain environment. However, gaps and biases in documented extinction risks to plant and fungal species impede effective management. Formal extinction risk assessments help avoid extinctions, through engagement, financial, or legal mechanisms, but most plant and fungal species lack assessments. Available global assessments cover c. 30% of plant species (ThreatSearch). Red List coverage overrepresents woody perennials and useful plants, but underrepresents single-country endemics. Fungal assessments overrepresent well-known species and are too few to infer global status or trends. Proportions of assessed vascular plant species considered threatened vary between global assessment datasets: 37% (ThreatSearch), and 44% (International Union for Conservation of Nature Red List of Threatened Species). Our predictions, correcting for several quantifiable biases, suggest that 39% of all vascular plant species are threatened with extinction. However, other biases remain unquantified, and may affect our estimate. Preliminary trend data show plants moving toward extinction. Quantitative estimates based on plant extinction risk assessments may understate likely biodiversity loss: they do not fully capture the impacts of climate change, slow-acting threats, or clustering of extinction risk, which could amplify loss of evolutionary potential. The importance of extinction risk estimation to support existing and emerging conservation initiatives is likely to grow as threats to biodiversity intensify. This necessitates urgent and strategic expansion of efforts toward comprehensive and ongoing assessment of plant and fungal extinction risk.
  •  
6.
  • Nelson, G., et al. (författare)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 284:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
7.
  • Pearce, T. R., et al. (författare)
  • International collaboration between collections-based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi
  • 2020
  • Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 515-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact Statement The United Nations' Sustainable Development Goal (SDG) 17 calls for "strong global partnerships and cooperation" to support the other SDGs. The collections-based science community offers many examples of conservation of plant and fungal biodiversity, sharing, repatriation and aggregation of data, access to new technologies, supply of plant and fungal material, strengthening capacity of practitioners, and benefit sharing with the providers of biodiversity and genetic resources. Collaboration framed by workable multilateral treaties will increase our understanding of plant and fungal diversity, help halt biodiversity loss, and accelerate our sustainable use of plants and fungi and the exploration of their useful traits. SummaryCollections-based institutes are at the forefront of generating knowledge and understanding of plant and fungal biodiversity. Through the analysis of occurrence data, the use of modern technologies to better understand the evolutionary relationships between species and documentation of their useful properties, the work of collections-based institutes provides good models for conservation; addressing species loss and improving sustainable use of plants and fungi. Nevertheless, the pressure on the planet's plant and fungal diversity is relentless. We argue that a massive increase in the accessibility of preserved and living collections of plants and fungi is required. An increased scale of responsible exploration to both conserve and unlock the useful properties of plants and fungi is needed to deliver solutions to the many global challenges facing humanity and the planet. This article explores the role of collaborations between collections-based institutes and their partners in preventing biodiversity loss and delivering sustainable development. Drawing on examples from herbaria, agricultural and wild species genebanks, mycological collections, an international NGO, and the botanic garden community, we demonstrate how collaboration improves efficiency and impact. Collaborations can be peer to peer, institutional, governmental, national, or international, they may involve work with local communities and are frequently a combination of these. We suggest the five key benefits to collaboration and show that with trust, understanding, and mutual respect, powerful and sustainable partnerships develop. Such trust and respect are hard won, but once established, sustain a high level of commitment, enable development of shared long-term visions of success, and attract diverse funding streams.
  •  
8.
  • Allison, Samantha L, et al. (författare)
  • Neurodegeneration, Alzheimer's disease biomarkers, and longitudinal verbal learning and memory performance in late middle age.
  • 2021
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 102, s. 151-160
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effect of neurodegeneration, and its interaction with Alzheimer's disease (AD) cerebrospinal fluid biomarkers, on longitudinal verbal learning and memory performance in cognitively unimpaired (CU) late middle-aged adults. Three hundred and forty-two CU adults (cognitive baseline mean age = 58.4), with cerebrospinal fluid and structural MRI, completed 2-10 (median = 5) cognitive assessments. Learning and memory were assessed using the Rey Auditory Verbal Learning Test (RAVLT). We used sequential comparison of nested linear mixed effects models to analyze the data. Model selection preserved a significant ptau181/Aβ42 × global atrophy × age interaction; individuals with less global atrophy and lower ptau181/Aβ42 levels had less learning and delayed recall decline than individuals with more global atrophy and/or higher levels of ptau181/Aβ42. The hippocampal volume × age × ptau181/Aβ42 interaction was not significant. Findings suggest that in a sample of CU late middle-aged adults, individuals with AD biomarkers, global atrophy, or both evidence greater verbal learning and memory decline than individuals without either risk factor.
  •  
9.
  • Simpson, J., et al. (författare)
  • Prognostic Models Derived in PARADIGM-HF and Validated in ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity in Chronic Heart Failure
  • 2020
  • Ingår i: JAMA Cardiology. - : American Medical Association (AMA). - 2380-6583 .- 2380-6591. ; 5:4, s. 432-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Accurate prediction of risk of death or hospitalizations in patients with heart failure (HF) may allow physicians to explore how more accurate decisions regarding appropriateness and timing of disease-modifying treatments, advanced therapies, or the need for end-of-life care can be made. Objective: To develop and validate a prognostic model for patients with HF. Design, Setting, and Participants: Multivariable analyses were performed in a stepwise fashion. Harrell C statistic was used to assess the discriminative ability. The derivation cohort was Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure trial (PARADIGM-HF) participants. The models were validated using the Aliskiren Trial to Minimize Outcomes in Patients with Heart Failure Trial (ATMOSPHERE) study and in the Swedish Heart Failure Registry (SwedeHF). A total of 8399 participants enrolled in PARADIGM-HF. Data were analyzed between June 2016 and June 2018. Main Outcomes and Measures: Cardiovascular death, all-cause mortality, and the composite of cardiovascular death or HF hospitalization at both 1 and 2 years. Results: Complete baseline clinical data were available for 8011 patients in PARADIGM-HF. The mean (SD) age of participants was 64 (11.4) years, 78.2% were men (n = 6567 of 8011), and 70.6% were New York Heart Association class II (n = 5919 of 8011). During a mean follow-up of 27 months, 1546 patients died, and 2031 had a cardiovascular death or HF hospitalization. The common variables were: Male sex, race/ethnicity (black or Asian), region (Central Europe or Latin America), HF duration of more than 5 years, New York Heart Association class III/IV, left ventricular ejection fraction, diabetes mellitus, β-blocker use at baseline, and allocation to sacubitril/valsartan. Ranked by χ2, N-terminal pro brain natriuretic peptide was the single most powerful independent predictor of each outcome. The C statistic at 1 and 2 years was 0.74 (95% CI, 0.71-0.76) and 0.71 (95% CI, 0.70-0.73) for the primary composite end point, 0.73 (95% CI, 0.71-0.75) and 0.71 (95% CI, 0.69-0.73) for cardiovascular death, and 0.71 (95% CI, 0.69-0.74) and 0.70 (95% CI, 0.67-0.74) for all-cause death, respectively. When validated in ATMOSPHERE, the C statistic at 1 and 2 years was 0.71 (95% CI, 0.69-0.72) and 0.70 (95% CI, 0.68-0.71) for the primary composite end point, 0.71 (95% CI, 0.69-0.74) and 0.70 (95% CI, 0.69-0.72) for cardiovascular death, and 0.71 (95% CI, 0.69-0.74) and 0.70 (95% CI, 0.68-0.72) for all-cause death, respectively. An online calculator was created to allow calculation of an individual's risk (http://www.predict-hf.com). Conclusions and Relevance: Predictive models performed well and were developed and externally validated in large cohorts of geographically representative patients, comprehensively characterized with clinical and laboratory data including natriuretic peptides, who were receiving contemporary evidence-based treatment. © 2020 American Medical Association. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy