SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller Christian) ;lar1:(slu)"

Sökning: WFRF:(Mueller Christian) > Sveriges Lantbruksuniversitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Verheyen, Kris (2)
Aakala, Tuomas (1)
Diaz, Sandra (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Wang, Jin (1)
visa fler...
Bond-Lamberty, Ben (1)
Wang, Mei (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Moretti, Marco (1)
Wang, Feng (1)
Graae, Bente Jessen (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
Stenlid, Jan (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Chen, Xi (1)
Clarke, Robert (1)
Isaac, Marney (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Kumar, Ashok (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Albert, Matthew L (1)
Manzoni, Stefano (1)
Jaroszewicz, Bogdan (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Zhu, Changlian, 1964 (1)
Dainese, Matteo (1)
Dahlgren, Jonas (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Lopez-Otin, Carlos (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Uppsala universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
visa fler...
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy