SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller Christian P.) ;lar1:(liu)"

Sökning: WFRF:(Mueller Christian P.) > Linköpings universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Chioncel, Ovidiu, et al. (författare)
  • Epidemiology, pathophysiology and contemporary management of cardiogenic shock - a position statement from the Heart Failure Association of the European Society of Cardiology
  • 2020
  • Ingår i: European Journal of Heart Failure. - : WILEY. - 1388-9842 .- 1879-0844. ; 22:8, s. 1315-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiogenic shock (CS) is a complex multifactorial clinical syndrome with extremely high mortality, developing as a continuum, and progressing from the initial insult (underlying cause) to the subsequent occurrence of organ failure and death. There is a large spectrum of CS presentations resulting from the interaction between an acute cardiac insult and a patients underlying cardiac and overall medical condition. Phenotyping patients with CS may have clinical impact on management because classification would support initiation of appropriate therapies. CS management should consider appropriate organization of the health care services, and therapies must be given to the appropriately selected patients, in a timely manner, whilst avoiding iatrogenic harm. Although several consensus-driven algorithms have been proposed, CS management remains challenging and substantial investments in research and development have not yielded proof of efficacy and safety for most of the therapies tested, and outcome in this condition remains poor. Future studies should consider the identification of the new pathophysiological targets, and high-quality translational research should facilitate incorporation of more targeted interventions in clinical research protocols, aimed to improve individual patient outcomes. Designing outcome clinical trials in CS remains particularly challenging in this critical and very costly scenario in cardiology, but information from these trials is imperiously needed to better inform the guidelines and clinical practice. The goal of this review is to summarize the current knowledge concerning the definition, epidemiology, underlying causes, pathophysiology and management of CS based on important lessons from clinical trials and registries, with a focus on improving in-hospital management.
  •  
3.
  • Maisel, Alan, et al. (författare)
  • State of the art : Using natriuretic peptide levels in clinical practice
  • 2008
  • Ingår i: European Journal of Heart Failure. - : Wiley. - 1388-9842 .- 1879-0844. ; 10:9, s. 824-839
  • Tidskriftsartikel (refereegranskat)abstract
    • Natriuretic peptide (NP) levels (B-type natriuretic peptide (BNP) and N-terminal proBNP) are now widely used in clinical practice and cardiovascular research throughout the world and have been incorporated into most national and international cardiovascular guidelines for heart failure. The role of NP levels in state-of-the-art clinical practice is evolving rapidly. This paper reviews and highlights ten key messages to clinicians:•NP levels are quantitative plasma biomarkers of heart failure (HF).•NP levels are accurate in the diagnosis of HF.•NP levels may help risk stratify emergency department (ED) patients with regard to the need for hospital admission or direct ED discharge.•NP levels help improve patient management and reduce total treatment costs in patients with acute dyspnoea.•NP levels at the time of admission are powerful predictors of outcome in predicting death and re-hospitalisation in HF patients.•NP levels at discharge aid in risk stratification of the HF patient.•NP-guided therapy may improve morbidity and/or mortality in chronic HF.•The combination of NP levels together with symptoms, signs and weight gain assists in the assessment of clinical decompensation in HF.•NP levels can accelerate accurate diagnosis of heart failure presenting in primary care.•NP levels may be helpful to screen for asymptomatic left ventricular dysfunction in high-risk patients.
  •  
4.
  • Seferovic, Petar M., et al. (författare)
  • Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology
  • 2019
  • Ingår i: European Journal of Heart Failure. - : WILEY. - 1388-9842 .- 1879-0844. ; 21:5, s. 553-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiomyopathies are a heterogeneous group of heart muscle diseases and an important cause of heart failure (HF). Current knowledge on incidence, pathophysiology and natural history of HF in cardiomyopathies is limited, and distinct features of their therapeutic responses have not been systematically addressed. Therefore, this position paper focuses on epidemiology, pathophysiology, natural history and latest developments in treatment of HF in patients with dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathies. In DCM, HF with reduced ejection fraction (HFrEF) has high incidence and prevalence and represents the most frequent cause of death, despite improvements in treatment. In addition, advanced HF in DCM is one of the leading indications for heart transplantation. In HCM, HF with preserved ejection (HFpEF) affects most patients with obstructive, and similar to 10% of patients with non-obstructive HCM. A timely treatment is important, since development of advanced HF, although rare in HCM, portends a poor prognosis. In RCM, HFpEF is common, while HFrEF occurs later and more frequently in amyloidosis or iron overload/haemochromatosis. Irrespective of RCM aetiology, HF is a harbinger of a poor outcome. Recent advances in our understanding of the mechanisms underlying the development of HF in cardiomyopathies have significant implications for therapeutic decision-making. In addition, new aetiology-specific treatment options (e.g. enzyme replacement therapy, transthyretin stabilizers, immunoadsorption, immunotherapy, etc.) have shown a potential to improve outcomes. Still, causative therapies of many cardiomyopathies are lacking, highlighting the need for the development of effective strategies to prevent and treat HF in cardiomyopathies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy