Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nandra K.) "

Sökning: WFRF:(Nandra K.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  • Edelson, R. A., et al. (författare)
  • Multiwavelength observations of short-timescale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability
  • 1996
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 470:1, s. 364-377377
  • Tidskriftsartikel (refereegranskat)abstract
    • For pt.III see ibid., vol.470, no.1, p.349-63 (1996). Combines data from the three preceding papers in order to analyze the multi wave-band variability and spectral energy distribution of the Seyfert 1 galaxy NGC 4151 during the 1993 December monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium-energy (~1.5 keV) X-rays, with a normalized variability amplitude (NVA) of 24%. Weaker (NVA=6%) variations (uncorrelated with those at lower energies) were seen at soft gamma-ray energies of ~100 keV. No significant variability was seen in softer (0.1-1 keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9% to 1% as the wavelength increased from 1275 to 6900 Aring. These data do not probe extreme ultraviolet (1200 Aring to 0.1 keV) or hard X-ray (250 keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of lsim0.15 day between 1275 Aring and the other ultraviolet bands, lsim0.3 day between 1275 Aring and 1.5 keV, and lsim1 day between 1275 and 5125 Aring. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-wave-band AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well fitted with a very steep, red power law (ales-2.5)
  • De Jong, R. S., et al. (författare)
  • 4MOST - 4-metre multi-object spectroscopic telescope
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - 9780819491473 ; , s. 84460T-
  • Konferensbidrag (refereegranskat)abstract
    • The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R∼20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
  • Cirasuolo, M., et al. (författare)
  • MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 1996-756X .- 0277-786X. ; 9147, s. 91470-91470
  • Konferensbidrag (refereegranskat)abstract
    • MOONS (the Multi-Object Optical and Near-infrared Spectrograph) has been selected by ESO as a third-generation instrument for the Very Large Telescope (VLT). The light grasp of the large collecting area offered by the VLT (8.2m diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8 -1.8 mu m) of MOONS will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of Galactic, extragalactic and cosmological studies, and it will provide crucial follow-up for major facilities such as Gaia, VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very first galaxies and reionization of the Universe at redshifts of z > 8-9, just a few million years after the Big Bang. From five years of observations MOONS will provide high-quality spectra for > 3M stars in our Galaxy and the Local Group, and for 1-2M galaxies at z > 1 (for an SDSS-like survey), promising to revolutionize our understanding of the Universe. The baseline design consists of similar to 1000 fibres, deployable over a field-of-view of similar to 500 arcmin(2), the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8 -1.8 mu m with two spectral resolving powers: in the medium-resolution mode (R similar to 4,000-6,000) the entire wavelength range is observed simultaneously, while the high-resolution mode will cover three selected sub-regions simultaneously: one region with R similar to 8,000 near the Ca II triplet to measure stellar radial velocities, and two regions at R similar to 20,000 (one in each of the J- and H-bands), for precision measurements of chemical abundances.
  • Mattila, S., et al. (författare)
  • A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
  • 2018
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 361:6401, s. 482-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
  • Chitham, J. Ider, et al. (författare)
  • Cosmological constraints from CODEX galaxy clusters spectroscopically confirmed by SDSS-IV/SPIDERS DR16
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 499:4, s. 4768-4784
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a cosmological analysis based on the properties of X-ray selected clusters of galaxies from the CODEX survey which have been spectroscopically followed up within the SPIDERS programme as part of the sixteenth data release (DR16) of SDSS-IV. The cosmological sub-sample contains a total of 691 clusters over an area of 5350 deg2 with newly measured optical properties provided by a reanalysis of the CODEX source catalogue using redMaPPer and the DESI Legacy Imaging Surveys (DR8). Optical richness is used as a proxy for the cluster mass, and the combination of X-ray, optical, and spectroscopic information ensures that only confirmed virialized systems are considered. Clusters are binned in observed redshift, z~∈[0.1,0.6) and optical richness, λ~∈[25,148) and the number of clusters in each bin is modelled as a function of cosmological and richness–mass scaling relation parameters. A high-purity sub-sample of 691 clusters is used in the analysis and best-fitting cosmological parameters are found to be Ωm0=0.34+0.09−0.05 and σ8=0.73+0.03−0.03⁠. The redshift evolution of the self-calibrated richness–mass relation is poorly constrained due to the systematic uncertainties associated with the X-ray component of the selection function (which assumes a fixed X-ray luminosity–mass relation with h = 0.7 and Ωm0=0.30⁠). Repeating the analysis with the assumption of no redshift evolution is found to improve the consistency between both cosmological and scaling relation parameters with respect to recent galaxy cluster analyses in the literature.
  • de Jong, Roelof S., et al. (författare)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 1996-756X .- 0277-786X. ; 9147
  • Konferensbidrag (refereegranskat)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy